精英家教网 > 高中数学 > 题目详情
5.设函数f(x)=ax2-lnx,其中a>$\frac{1}{2}$.
(1)求函数f(x)的单调区间;
(2)设f(x)的最小值为g(x),证明函数y=a-g(a)没有零点.

分析 (1)先求出函数的定义域,然后求导数,通过解不等式获得函数的增减区间,注意对a进行讨论;
(2)结合(1)的结论求出函数的最小值,然后再判断函数y=g(a)-a的零点个数.

解答 解:(1)易知函数的定义域为(0,+∞).
f′(x)=2ax-$\frac{1}{x}$=$\frac{2a{x}^{2}-1}{x}$.令f′(x)=0得x=$±\frac{1}{\sqrt{2a}}$(负值舍去),所以x=$\frac{1}{\sqrt{2a}}$.
由f′(x)>0得x>$\frac{1}{\sqrt{2a}}$,由f′(x)<0得$0<x<\frac{1}{\sqrt{2a}}$.
故f(x)在(0,$\frac{1}{\sqrt{2a}}$)上递减,在[$\frac{1}{\sqrt{2a}},+∞$)上递增.
(2)由(1)可知f(x)min=f($\frac{1}{\sqrt{2a}}$)=$\frac{1}{2}-ln\frac{1}{\sqrt{2a}}$=$\frac{1}{2}(1+ln2a)$=g(a).
设h(a)=a-g(a)=$a-\frac{1}{2}lna-\frac{1}{2}ln2e$.(a$>\frac{1}{2}$)
令h$′(a)=1-\frac{1}{2a}=\frac{2a-1}{2a}$=0得a=$\frac{1}{2}$.由h′(a)>0得a$>\frac{1}{2}$.
所以当a$∈(\frac{1}{2},+∞)$时,h(a)是增函数.
设h(a)在a=$\frac{1}{2}$处有定义,而h($\frac{1}{2}$)=$\frac{1}{2}-\frac{1}{2}ln\frac{1}{2}-\frac{1}{2}ln2e=\frac{1}{2}+\frac{1}{2}ln2-\frac{1}{2}ln2-\frac{1}{2}=0$.
所以当a$>\frac{1}{2}$时,h(a)>0恒成立.
故函数函数y=a-g(a)没有零点.

点评 本题考查了利用导数研究函数的单调性、极值、以及函数的零点的方法,要注意结合图象解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知集合A={y|y=-x2+1,x∈R},B={y|y=log2x},则A∩B=(  )
A.(-∞,1]B.RC.D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=mx-alnx-m,g(x)=$\frac{ex}{e^x}$,其中m,a均为实数,
(1)求g(x)的极值;
(2)设m=1,a=0,求证对$?{x_1},{x_2}∈[{3,4}]({x_1}≠{x_2}),|{f({x_2})-f({x_1})}|<|{\frac{{e{x_2}}}{{g({x_2})}}-\frac{{e{x_1}}}{{g({x_1})}}}$|恒成立;
(3)设a=2,若对?给定的x0∈(0,e],在区间(0,e]上总存在t1,t2(t1≠t2)使得f(t1)=f(t2)=g(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C的极坐标方程为ρ=2cosθ-4sinθ.以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=-1+tsinα}\end{array}\right.$(t为参数).
(Ⅰ)判断直线l与曲线C的位置关系,并说明理由;
(Ⅱ)若直线l和曲线C相交于A,B两点,且|AB|=3$\sqrt{2}$,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x-aex(a为实常数).
(1)若函数f(x)在x=0的切线与x轴平行,求a的值;
(2)若f(x)有两个零点x1、x2,求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求f(x)=ax2-(2a+1)x+lnx的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的左、右顶点分别为D、E,过点D作直线l依次交椭圆C,直线x=$\sqrt{3}$于M、N两点,若点M位于第一象限,求$\frac{|ME|}{|NE|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={1,2,3,4},B={1,3,m},且B⊆A,那么实数m=2或4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.半径为R的球内部装有4个半径相同的小球,则小球半径r的可能最大值为(  )
A.$\frac{{\sqrt{3}}}{{2+\sqrt{3}}}R$B.$\frac{1}{{1+\sqrt{3}}}R$C.$\frac{{\sqrt{6}}}{{3+\sqrt{6}}}R$D.$\frac{{\sqrt{5}}}{{2+\sqrt{5}}}R$

查看答案和解析>>

同步练习册答案