15£®ÒÑÖªf£¨x£©=mx-alnx-m£¬g£¨x£©=$\frac{ex}{e^x}$£¬ÆäÖÐm£¬a¾ùΪʵÊý£¬
£¨1£©Çóg£¨x£©µÄ¼«Öµ£»
£¨2£©Éèm=1£¬a=0£¬ÇóÖ¤¶Ô$?{x_1}£¬{x_2}¡Ê[{3£¬4}]£¨{x_1}¡Ù{x_2}£©£¬|{f£¨{x_2}£©-f£¨{x_1}£©}|£¼|{\frac{{e{x_2}}}{{g£¨{x_2}£©}}-\frac{{e{x_1}}}{{g£¨{x_1}£©}}}$|ºã³ÉÁ¢£»
£¨3£©Éèa=2£¬Èô¶Ô?¸ø¶¨µÄx0¡Ê£¨0£¬e]£¬ÔÚÇø¼ä£¨0£¬e]ÉÏ×Ü´æÔÚt1£¬t2£¨t1¡Ùt2£©Ê¹µÃf£¨t1£©=f£¨t2£©=g£¨x0£©³ÉÁ¢£¬ÇómµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Çó³öº¯ÊýµÄµ¼Êý£¬ÀûÓõ¼º¯ÊýµÄ·ûºÅÅжϺ¯ÊýµÄµ¥µ÷ÐÔ£¬È»ºóÇó½â¼«Öµ£®
£¨2£©Í¨¹ým=1£¬a=0£¬»¯¼òf£¨x£©=x-1£¬ÀûÓú¯ÊýµÄµ¥µ÷ÐÔ£¬×ª»¯Ô­²»µÈʽת»¯$f£¨{x_2}£©-f£¨{x_1}£©£¼\frac{{e{x_2}}}{{g£¨{x_2}£©}}-\frac{{e{x_1}}}{{g£¨{x_1}£©}}$£¬
¹¹Ô캯Êý$h£¨x£©=f£¨x£©-\frac{ex}{g£¨x£©}=x-{e^x}-1$£¬ÀûÓÃк¯ÊýµÄµ¼ÊýµÄµ¥µ÷ÐÔ£¬Ö¤²»µÈʽ³ÉÁ¢£®
£¨3£©ÓÉ£¨1£©µÃg£¨x£©µÄ×î´óÖµ£¬Çó³öº¯Êýf£¨x£©µÄµ¼Êý£¬ÅжÏm¡Ü0£¬²»Âú×ãÌâÒ⣻µ±m£¾0ʱ£¬Òª?t1£¬t2ʹµÃf£¨t1£©=f£¨t2£©£¬f£¨x£©µÄ¼«Öµµã±ØÔÚÇø¼ä£¨0£¬e£©ÄÚ£¬Çó³ömµÄ·¶Î§£¬µ±$m£¾\frac{2}{e}$£¬ÀûÓÃg£¨x£©ÔÚ£¨0£¬e£©ÉϵÄÖµÓò°üº¬ÓÚf£¨x£©ÔÚ$£¨{0£¬\frac{2}{m}}£©ºÍ£¨{\frac{2}{m}£¬e}£©$ÉϵÄÖµÓò£¬ÍƳö¹ØÏµÊ½£¬Í¨¹ý¹¹Ô캯Êýw£¨x£©=2ex-x£¬Í¨¹ýµ¼ÊýÇó½âº¯ÊýµÄ×îÖµ£¬È»ºóÍÆ³ö$m¡Ý\frac{3}{e-1}$£®

½â´ð ½â£º£¨1£©¡ß$g£¨x£©=\frac{ex}{e^x}$£¬¡à${g^'}£¨x£©=\frac{-e£¨x-1£©}{e^x}$£¬
¡à£¨-¡Þ£¬1£©¡ü£¬£¨1£¬+¡Þ£©¡ý£¬
¡àg£¨x£©¼«´óÖµg£¨1£©=1£¬ÎÞ¼«Ð¡Öµ£»¡­£¨4·Ö£©
£¨2£©¡ßm=1£¬a=0£¬¡àf£¨x£©=x-1£¬ÔÚ[3£¬4]ÉÏ ÊÇÔöº¯Êý¡à$\frac{ex}{g£¨x£©}={e^x}$£¬ÔÚ[3£¬4]ÉÏÊÇÔöº¯Êý
Éè3¡Üx1£¼x2¡Ü4£¬ÔòÔ­²»µÈʽת»¯Îª$f£¨{x_2}£©-f£¨{x_1}£©£¼\frac{{e{x_2}}}{{g£¨{x_2}£©}}-\frac{{e{x_1}}}{{g£¨{x_1}£©}}$
¼´$f£¨{x_2}£©-\frac{{e{x_2}}}{{g£¨{x_2}£©}}£¼f£¨{x_1}£©-\frac{{e{x_1}}}{{g£¨{x_1}£©}}$¡­£¨6·Ö£©
Áî$h£¨x£©=f£¨x£©-\frac{ex}{g£¨x£©}=x-{e^x}-1$£¬
¼´Ö¤?x1£¼x2£¬h£¨x2£©£¼h£¨x1£©£¬¼´h£¨x£©ÔÚ[3£¬4]¡ý
¡ßh¡ä£¨x£©=1-ex£¼0ÔÚ[3£¬4]ºã³ÉÁ¢¼´h£¨x£©ÔÚ[3£¬4]¡ý£¬
¼´ËùÖ¤²»µÈʽ³ÉÁ¢£®¡­£¨9·Ö£©
£¨3£©ÓÉ£¨1£©µÃg£¨x£©ÔÚ£¨0£¬1£©¡ü£¨1£¬e£©¡ý£¬g£¨x£©max=g£¨1£©=1
ËùÒÔ£¬g£¨x£©¡Ê£¨0£¬1]
ÓÖ${f^'}£¨x£©=m-\frac{2}{x}£¬µ±m¡Ü0ʱ£¬{f^'}£¨x£©£¼0£¬f£¨x£©ÔÚ£¨{0£¬e}£©¡ý$²»·ûºÏÌâÒâ
µ±m£¾0ʱ£¬Òª?t1£¬t2ʹµÃf£¨t1£©=f£¨t2£©£¬
ÄÇôÓÉÌâÒâÖªf£¨x£©µÄ¼«Öµµã±ØÔÚÇø¼ä£¨0£¬e£©ÄÚ£¬¼´$0£¼\frac{2}{m}£¼e$
µÃ$m£¾\frac{2}{e}$£¬ÇÒº¯Êýf£¨x£©ÔÚ$£¨{0£¬\frac{2}{m}}£©¡ý£¬£¨{\frac{2}{m}£¬e}£©¡ü$
ÓÉÌâÒâµÃg£¨x£©ÔÚ£¨0£¬e£©ÉϵÄÖµÓò°üº¬ÓÚf£¨x£©ÔÚ$£¨{0£¬\frac{2}{m}}£©ºÍ£¨{\frac{2}{m}£¬e}£©$ÉϵÄÖµÓò£¬
¡à$£¨{\frac{2}{m}£¬e}£©$ÄÚ£¬$\left\{{\begin{array}{l}{f£¨\frac{2}{m}£©¡Ü0}\\{f£¨e£©¡Ý1}\end{array}}\right.⇒m¡Ý\frac{3}{e-1}$£¬
ÏÂÃæÖ¤$t¡Ê£¨{0£¬\frac{2}{m}}]$ʱ£¬f£¨t£©¡Ý1£¬È¡t=e-m£¬ÏÈÖ¤${e^{-m}}£¼\frac{2}{m}£¬¼´Ö¤2{e^m}-m£¾0$£®
Áîw£¨x£©=2ex-x£¬¡à${w^'}£¨x£©=2{e^x}-1£¾0£¬ÔÚ[{\frac{3}{e-1}£¬+¡Þ}£©$ÄÚºã³ÉÁ¢£¬¡àw£¨x£©¡ü£¬¡à$w£¨x£©¡Ýw£¨\frac{3}{e-1}£©£¾0$£¬¡à2em-m£¾0£¬
ÔÙÖ¤f£¨e-m£©¡Ý1£¬¡ß$f£¨{e^{-m}}£©=m{e^{-m}}+m£¾m¡Ý\frac{3}{e-1}£¾1$£¬
¡à$m¡Ý\frac{3}{e-1}$£®¡­£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éº¯ÊýµÄµ¼ÊýµÄ×ÛºÏÓ¦Ó㬺¯ÊýµÄ¼«ÖµÒÔ¼°º¯ÊýµÄµ¥µ÷ÐÔµÄÅжÏÓëÓ¦Óã¬Ðº¯ÊýÒÔ¼°¹¹Ôì·¨µÄÓ¦Ó㬿¼²é×ۺϷÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èçͼ£¬ÒÑÖªÔ²O£ºx2+y2=4£¬MµÄ×ø±êΪ£¨4£¬4£©£¬Ô²OµÄÄÚ½ÓÕý·½ÐÎABCDµÄ±ßAD£¬CDµÄÖеã·Ö±ðΪE£¬F£¬µ±Õý·½ÐÎABCDÈÆÔ²ÐÄOת¶¯Ê±£¬Ôò$\overrightarrow{OE}•\overrightarrow{MF}$µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-4£¬4]B£®$[-4\sqrt{2}£¬4\sqrt{2}]$C£®[-8£¬8]D£®$[-8\sqrt{2}£¬8\sqrt{2}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ð´³ö²»´óÓÚ1000µÄËùÓÐÄܱ»7Õû³ýµÄÕýÕûÊý£¬ÏÂÃæÊÇËÄλͬѧÉè¼ÆµÄ³ÌÐò¿òͼ£¬ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¡°m£¾3¡±ÊÇ¡°ÇúÏßmx2-£¨m-2£©y2=1Ϊ˫ÇúÏß¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö¶ø²»±ØÒªÌõ¼þB£®±ØÒª¶ø²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®¶ÔÓÚ¶¨ÒåÔÚÕýÕûÊý¼¯ÇÒÔÚÕýÕûÊý¼¯ÉÏȡֵµÄº¯Êýf£¨x£©Âú×ãf£¨1£©¡Ù1£¬ÇÒ¶Ô?n¡ÊN*£¬ÓÐf£¨n£©+f£¨n+1£©+f£¨f£¨n£©£©=3n+1£¬Ôòf£¨2015£©=£¨¡¡¡¡£©
A£®2014B£®2015C£®2016D£®2017

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Ä³¸ßÖй²ÓÐѧÉú2000Ãû£¬¸÷Äê¼¶ÄС¢Å®ÉúÈËÊýÈçÏÂ±í£¬ÒÑÖªÔÚȫУѧÉúÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½¸ß¶þÄê¼¶Å®ÉúµÄ¸ÅÂÊÊÇ0.19£¬ÏÖÓ÷ֲã³éÑùµÄ·½·¨ÔÚȫУ³éÈ¡64ÃûѧÉú£¬ÔòÔÚ¸ßÈýÄê¼¶Ó¦³éÈ¡16ÃûѧÉú£®
¸ßÒ»¸ß¶þ¸ßÈý
Å®Éú373mn
ÄÐÉú377370p

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬Ô²OÓëxÖáµÄÕý°ëÖáµÄ½»µãΪA£¬µãB£¬CÔÚÔ²OÉÏ£¬µãBµÄ×ø±êΪ£¨-1£¬2£©£¬µãCλÓÚµÚÒ»ÏóÏÞ£¬¡ÏAOC=¦Á£®Èô|BC|=$\sqrt{5}$£¬Ôòsin$\frac{¦Á}{2}$cos$\frac{¦Á}{2}$+$\sqrt{3}$cos2$\frac{¦Á}{2}$-$\frac{\sqrt{3}}{2}$=£¨¡¡¡¡£©
A£®-$\frac{2\sqrt{5}}{5}$B£®-$\frac{\sqrt{5}}{5}$C£®$\frac{\sqrt{5}}{5}$D£®$\frac{2\sqrt{5}}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®É躯Êýf£¨x£©=ax2-lnx£¬ÆäÖÐa£¾$\frac{1}{2}$£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Éèf£¨x£©µÄ×îСֵΪg£¨x£©£¬Ö¤Ã÷º¯Êýy=a-g£¨a£©Ã»ÓÐÁãµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÕýËÄÀâ×¶S-ABCD£¬µ×Ãæ±ß³¤Îª2£¬²àÀⳤΪ3£¬ÔòÆäÍâ½ÓÇòºÍÄÚÇÐÇòµÄ°ë¾¶ÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸