精英家教网 > 高中数学 > 题目详情
20.已知集合A={x|x2-1≥0,x∈R},B={x|0≤x<3,x∈R},则A∩B=(  )
A.{x|1<x<3,x∈R}B.{x|1≤x≤3,x∈R}C.{x|1≤x<3,x∈R}D.{x|0<x<3,x∈R}

分析 求出A中不等式的解集确定出A,找出A与B的交集即可.

解答 解:由A中不等式变形得:(x+1)(x-1)≥0,
解得:x≤-1或x≥1,即A={x|x≤-1或x≥1,x∈R},
∵B={x|0≤x<3,x∈R},
∴A∩B={x|1≤x<3,x∈R},
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知集合A={0,1,2},B={x|x2=1},则A∩B等于(  )
A.{-1,1}B.{0,1}C.{1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果实数x,y满足条件$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-y+2≥0}\\{x-a≤0}\end{array}\right.$,若z=$\frac{y-1}{x+1}$的最小值小于$\frac{1}{2}$,则实数a的取值范围是(  )
A.(-∞,1)B.(1,+∞)C.($\frac{1}{5}$,1)D.($\frac{1}{5}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若非空集合A={x|a+1≤x≤3a-5},集合B={x|1≤x≤16},则满足A⊆(A∩B)的实数a的取值范围是(  )
A.[0,7]B.[7,15]C.[3,7]D.[3,15]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若实数x,y满足$\left\{\begin{array}{l}x-y-2≥0\\ 2x+y-2≤0\\ y+4≥0.\end{array}\right.$,则目标函数z=4x+3y的最大值为(  )
A.0B.$\frac{10}{3}$C.12D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在钝角△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,b=3,cosC=$\frac{11}{14}$.
(Ⅰ)求c和角A的大小;
(Ⅱ)求sin(2C-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C的对边分别是a,b,c,已知b=2,且cos2B+cosB+cos(A-C)=1,则a+2c的最小值时,最大边所对角的余弦值是-$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某地区交管部门为了对该地区驾驶员的某项考试成绩进行分析,随机抽取了15分到45分之间的1000名学员的成绩,并根据这1000名驾驶员的成绩画出样本的频率分布直方图(如图),则成绩在[30,35)内的驾驶员人数共有300.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某公司13个部门接受的快递的数量如茎叶图所示,则这13个部门接收的快递的数量的中位数为10.

查看答案和解析>>

同步练习册答案