精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆经过点,离心率为,动点

(Ⅰ)求椭圆的标准方程;

(Ⅱ)求以为直径且被直线截得的弦长为2的圆的方程;

(Ⅲ)设是椭圆的右焦点,过点的垂线与以为直径的圆交于点,证明:线段的长为定值,并求出这个定值.

【答案】(Ⅰ);(Ⅱ)线段的长为定值.

【解析】试题分析:(Ⅰ)根据离心率,且过点,解方程组得:

,所以椭圆方程为.(Ⅱ)以根据平面几何得知识,利用弦心距、半弦长、半径构成直角三角形可求半径. (Ⅲ)过点的垂线,垂足设为,由平面几何知: ,根据直线与圆锥曲线的位置关系得: ,所以线段的长为定值

试题解析:(Ⅰ)由题意得,①

因为椭圆经过点,所以,②

,③

由①②③解得

所以椭圆方程为

(Ⅱ)以为直径的圆的圆心为,半径

方程为

因为以为直径的圆被直线截得的弦长为2,

所以圆心到直线的距离

所以,解得

所求圆的方程为

(Ⅲ)过点的垂线,垂足设为,由平面几何知:

则直线 ,直线

所以线段的长为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,其左顶点在圆上.

Ⅰ)求椭圆的方程;

直线交椭圆两点,设点关于轴的对称点为(点与点不重合),且直线轴的交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系.若直线的极坐标方程为,曲线的极坐标方程为,将曲线上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)已知直线与曲线交于两点,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=cos(2x+ ),x∈R的图象,只需把函数y=cos2x的图象(
A.向左平行移动 个单位长度
B.向左平行移动 个单位长度
C.向右平行移动 个单位长度
D.向右平行移动 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形, 的中点。

1)证明: 平面;

2)设 ,三棱锥的体积 ,求A到平面PBC的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为1的正方形,侧棱底面,且 是侧棱上的动点.

(Ⅰ)求四棱锥的体积;

(Ⅱ)如果的中点,求证平面

(Ⅲ)是否不论点在侧棱的任何位置,都有?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆

(1)若直线与圆相交于两个不同点,求的最小值;

(2)直线上是否存在点,满足经过点有无数对互相垂直的直线,它们分别与圆和圆相交,并且直线被圆所截得的弦长等于直线被圆所截得的弦长?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23日是世界读书日,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为读书谜,低于60分钟的学生称为非读书谜

1的值并估计全校3000名学生中读书谜大概有多少?(将频率视为概率)

2根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为读书谜与性别有关?

非读书迷

读书迷

合计

15

45

合计

附:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案