分析 (1)当n=1时,S1=2a1-4,a1=4,当n≥2时,${a_n}={S_n}-{S_{n-1}}=2{a_n}-{2^{n+1}}-2{a_{n-1}}+{2^n}$,整理得:$\frac{a_n}{2^n}-\frac{{{a_{n-1}}}}{{{2^{n-1}}}}=1$,可得bn-bn-1=1,${b_1}=\frac{a_1}{2}=2$,{bn}是首项为2,公差为1的等差数列;
(2)由(1)可知:${c_n}={b_n}•{2^{-n}}=(n+1)•\frac{1}{2^n}$,利用“错位相减法”即可求得${T_n}=3-\frac{2}{2^n}-\frac{n+1}{2^n}=3-\frac{n+3}{2^n}<3$;
(3)由dn+1>dn得4n+1+(-1)nλ•2n+2>4n+(-1)n-1λ•2n+1,整理得:2n-1+(-1)nλ>0,当n为奇数时,λ<2n-1,λ<1;当n为偶数时,λ>-2n-1,λ>-2,由λ为非零整数,即可求得λ=-1.
解答 解:(1)证明:当n=1时,S1=2a1-4,
∴a1=4,
当n≥2时,${a_n}={S_n}-{S_{n-1}}=2{a_n}-{2^{n+1}}-2{a_{n-1}}+{2^n}$,
∴${a_n}-2{a_{n-1}}={2^n}$,即$\frac{a_n}{2^n}-\frac{{{a_{n-1}}}}{{{2^{n-1}}}}=1$,
∴bn-bn-1=1(常数),
又${b_1}=\frac{a_1}{2}=2$,
∴{bn}是首项为2,公差为1的等差数列,bn=n+1.
(2)证明:由(1)可知:${c_n}={b_n}•{2^{-n}}=(n+1)•\frac{1}{2^n}$,
${T_n}=\frac{2}{2}+\frac{3}{2^2}+…+\frac{n+1}{2^n}$,
相减得$\frac{1}{2}{T_n}=1+\frac{1}{2^2}+\frac{1}{2^3}+…+\frac{1}{2^n}-\frac{n+1}{{{2^{n+1}}}}$,
=$1+\frac{{\frac{1}{2^2}(1-\frac{1}{{{2^{n-1}}}})}}{{1-\frac{1}{2}}}-\frac{n+1}{{{2^{n+1}}}}$,
=$\frac{3}{2}-\frac{1}{2^n}-\frac{n+1}{{{2^{n+1}}}}$,
∴${T_n}=3-\frac{2}{2^n}-\frac{n+1}{2^n}=3-\frac{n+3}{2^n}<3$.
(3)由dn+1>dn得4n+1+(-1)nλ•2n+2>4n+(-1)n-1λ•2n+1,
3•4n+(-1)nλ•2n+2+(-1)nλ•2n+1>0,
3•4n+(-1)nλ•2n+1×3>0,
2n-1+(-1)nλ>0,
当n为奇数时,λ<2n-1,
∴λ<1;
当n为偶数时,λ>-2n-1,
∴λ>-2,
∴-2<λ<1,
又λ为非零整数,
∴λ=-1.
点评 本题考查等差数列的性质及通项公式,“错位相减法”求数列的前n项和,不等式的性质,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2+$\sqrt{5}$ | B. | 3+$\frac{\sqrt{5}}{2}$ | C. | 2+$\frac{\sqrt{5}}{2}$ | D. | 3+$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,2) | B. | (-∞,-2)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-2,0)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)无极值点 | B. | x=1为f(x)的极小值点 | ||
| C. | x=2为f(x)的极大值点 | D. | x=2为f(x)的极小值点 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com