精英家教网 > 高中数学 > 题目详情
10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{3}$,实轴长为2,直线l:x-y+m=0与双曲线C交于不同的两点A,B,
(1)求双曲线C的方程;  
(2)若线段AB的中点在圆x2+y2=5上,求m的值;
(3)若线段AB的长度为4$\sqrt{5}$,求直线l的方程.

分析 (1)根据双曲线的离心率和和实轴长即可求出a,b的值,问题得以解决,
(2)设A、B两点的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),根据点M(x0,y0)在圆x2+y2=5上,即可求出m的值,
(3)根据弦长公式即可求出m的值.

解答 解:(1)由题意,得$\frac{c}{a}$=$\sqrt{3}$,2a=2,又因为c2=a2+b2
解得a=1,c=$\sqrt{3}$,
∴b2=c2-a2=2
∴所求双曲线C的方程为x2-$\frac{{y}^{2}}{2}$=1.
(2)设A、B两点的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),
由$\left\{\begin{array}{l}{{x}^{2}-\frac{{y}^{2}}{2}=1}\\{x+y+m=0}\end{array}\right.$得x2-2mx-m2-2=0,判别式△>0,
∴x0=$\frac{{x}_{1}+{x}_{2}}{2}$=m,y0=x0+m=2m,
∵点M(x0,y0)在圆x2+y2=5上,
∴m2+(2m)2=5,
∴m=±1.
(3)由$|{AB}|=\sqrt{{{({x_1}-{x_2})}^2}+{{({y_1}-{y_2})}^2}}$=$\sqrt{{{({x_1}-{x_2})}^2}+{{({x_1}-{x_2})}^2}}$=$\sqrt{2{{({x_1}-{x_2})}^2}}$=$\sqrt{2[{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}$=$\sqrt{2[{{(2m)}^2}-4(-{m^2}-2)}]$=$4\sqrt{5}$
解得m=±2
所以直线l的方程为x-y+2=0或x-y-2=0

点评 本题考查了双曲线的性质和点和圆的位置关系和弦长公式,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.化简$\frac{cos(π+α)•sin(α+2π)}{sin(-α-π)•cos(-π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设曲线l极坐标方程为ρcosθ-ρsinθ+1=0,曲线C的参数方程为$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.(θ为参数)$,A,B为曲线l与曲线C的两个交点,则|AB|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥S-ABCD中,点O是正方形ABCD的中心,SO⊥平面ABCD,且SO=OD,点P为棱SD上一点.
(Ⅰ) 当点P为棱SD的中点时,求证:SD⊥平面PAC;
(Ⅱ)是否存在点P,使得直线BC与平面PAC所成角的正弦值为$\frac{\sqrt{10}}{10}$?若存在,请确定点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}满足a1=6,a2=-3,2an+2=an+1+an
(1)记bn=an+1-an,证明:{bn}是等比数列;
(2)求数列{an}的前n项和Sn的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设命题p:点(1,1)在圆x2+y2-2mx+2my+2m2-4=0的内部;命题q:直线mx-y+1+2m=0(k∈R)不经过第四象限,如果p∨q为真命题,p∧q为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知sina=-$\frac{\sqrt{3}}{2}$,a∈[-2π,0],则a=$-\frac{π}{3}$和$-\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图所示是y=Asin(ωx+φ)(A>0,ω>0)的图象的一段,它的一个解析式为(  ) 
A.y=$\frac{2}{3}$sin(2x+$\frac{π}{3}$)B.y=$\frac{2}{3}$sin($\frac{x}{2}$+$\frac{π}{4}$)C.y=$\frac{2}{3}$sin(x-$\frac{π}{3}$)D.y=$\frac{2}{3}$sin(2x+$\frac{2}{3}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$p:|{1-\frac{x-1}{3}}|≤2$,q:x2-2x+(1-m2)≤0,若“¬p”是“¬q”的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案