精英家教网 > 高中数学 > 题目详情
20.已知$p:|{1-\frac{x-1}{3}}|≤2$,q:x2-2x+(1-m2)≤0,若“¬p”是“¬q”的必要而不充分条件,求实数m的取值范围.

分析 分别求出“¬p”和“¬q”对应的x取值范围A和B,根据“¬p”是“¬q”的必要而不充分条件,则B?A.可得答案.

解答 (本小题12分)
解:由$p:|{1-\frac{x-1}{3}}|≤2$,解得-2≤x≤10,
∴“¬p”:A=(-∞,-2)∪(10,+∞).
由q:x2-2x+(1-m2)≤0,
解得:1-|m|≤x≤1+|m|,
∴“¬q”:B=(-∞,1-|m|)∪(10,1+|m|).
由“¬p”是“¬q”的必要而不充分条件可知:B?A.
1-|m|≤-2,且1+|m|≥10,
解得|m|≥9.
∴满足条件的m的取值范围为(-∞,-9]∪[9,+∞).

点评 本题以命题的真假判断与应用为载体,考查了命题的否定,充要条件,集合的包含关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{3}$,实轴长为2,直线l:x-y+m=0与双曲线C交于不同的两点A,B,
(1)求双曲线C的方程;  
(2)若线段AB的中点在圆x2+y2=5上,求m的值;
(3)若线段AB的长度为4$\sqrt{5}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知命题p:方程$\frac{x^2}{t+2}+\frac{y^2}{t-10}=1$表示双曲线;命题q:-m<t<m+1(m>0). 若q是p的充分非必要条件,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知θ∈(${\frac{π}{2}$,π),$\frac{1}{sinθ}$+$\frac{1}{cosθ}$=2$\sqrt{2}$,则cos(2θ+$\frac{π}{3}}$)的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:方程$\frac{x^2}{m+1}+\frac{y^2}{3-m}=1$表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+2m+3=0无实根,若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC,$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$,AD与CE的交点为G,$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,若$\overrightarrow{BG}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$,则λ+μ=(  )
A.$\frac{2}{7}$B.$\frac{3}{7}$C.$\frac{4}{7}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.非零向量$\overrightarrow a,\overrightarrow b$满足$\overrightarrow a⊥({2\overrightarrow a+\overrightarrow b})$,且$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{2π}{3}$,则$\frac{{|{\overrightarrow a}|}}{{|{\overrightarrow b}|}}$=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{{\sqrt{3}}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=sin({2x+φ})({|φ|<\frac{π}{2}})$的图象向左平移$\frac{π}{6}$个单位后关于y轴对称,则函数f(x)的一个单调递增区间是(  )
A.$[{-\frac{5π}{6},\frac{π}{12}}]$B.$[{-\frac{π}{3},\frac{π}{6}}]$C.$[{-\frac{π}{6},\frac{π}{3}}]$D.$[{\frac{π}{6},\frac{2π}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)在R上的导函数为f'(x),对于任意的实数x,都有f'(x)+2017<4034x,若f(t+1)<f(-t)+4034t+2017,则实数t的取值范围是(  )
A.$({-\frac{1}{2},+∞})$B.$({-\frac{3}{2},+∞})$C.$({-∞,-\frac{1}{2}})$D.$({-∞,-\frac{3}{2}})$

查看答案和解析>>

同步练习册答案