精英家教网 > 高中数学 > 题目详情
3.设曲线l极坐标方程为ρcosθ-ρsinθ+1=0,曲线C的参数方程为$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.(θ为参数)$,A,B为曲线l与曲线C的两个交点,则|AB|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{6}$

分析 先将直线的极坐标方程化为直角坐标方程,曲线C的参数方程化为普通方程,然后利用代数法或几何法解答.

解答 方法一:代数法
直线l:ρcosθ-ρsinθ+1=0⇒x-y+1=0,
曲线C:$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}\right.$⇒x2+y2=2,
联立,$\left\{\begin{array}{l}{y=x+1}\\{{x}^{2}+{y}^{2}=2}\end{array}\right.$,得x2+(x+1)2-2=0,
即2x2+2x-1=0,设A(x1,y1),B(x2,y2),
由韦达定理,$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=-1}\\{{x}_{1}{x}_{2}=-\frac{1}{2}}\end{array}\right.$,
所以$|AB|=\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|$=$\sqrt{1+{k}^{2}}\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{6}$,选D.
方法二:几何法
直线l:ρcosθ-ρsinθ+1=0⇒x-y+1=0,
曲线C:$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}\right.$⇒x2+y2=2,
圆心(0,0)到直线x-y+1=0的距离$d=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$,
半径$r=\sqrt{2}$,所以$|AB|=2\sqrt{{r}^{2}-{d}^{2}}=\sqrt{6}$,选D.
注:当然此题也可以直接求出A,B两点的坐标,然后利用两点之间的距离公式求解.

点评 极坐标和参数方程问题一般化为熟悉的直角坐标问题,所以转化是解决此类问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.如图,直三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=$\sqrt{2}$,则异面直线A1C与B1C1所成的角为$\frac{π}{3}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.要得到函数y=sinx的图象,只需将函数$y=sin(x-\frac{π}{3})$的图象(  )
A.向右平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{π}{3}$个单位D.向左平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.给定直线l:y=2x-16,抛物线G:y2=ax(a>0)
(1)当抛物线G的焦点在直线l上时,求a的值;
(2)若△ABC的三个顶点都在(1)所确定的抛物线G上,且点A的纵坐标yA=8,△ABC的重心恰是抛物线G的焦点F,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设曲线y=x4+ax+3在x=1处的切线方程是y=x+b,则a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-1≥0\\ x≤3\end{array}\right.$,则z=2x-3y的最小值是-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足:a1=$\frac{1}{2}$,an+1=$\frac{{a}_{n}^{2}}{2016}$+an(n∈N*).
(1)求证:an+1>an
(2)求证:a2017<1;
(3)若ak>1,求正整数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{3}$,实轴长为2,直线l:x-y+m=0与双曲线C交于不同的两点A,B,
(1)求双曲线C的方程;  
(2)若线段AB的中点在圆x2+y2=5上,求m的值;
(3)若线段AB的长度为4$\sqrt{5}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知命题p:方程$\frac{x^2}{t+2}+\frac{y^2}{t-10}=1$表示双曲线;命题q:-m<t<m+1(m>0). 若q是p的充分非必要条件,试求实数m的取值范围.

查看答案和解析>>

同步练习册答案