精英家教网 > 高中数学 > 题目详情
7.已知$cosβ=-\frac{1}{3},sin({α+β})=\frac{7}{9}$,其中$α∈({0,\frac{π}{2}}),β∈({\frac{π}{2},π})$.
(1)求$tan\frac{β}{2}$的值;
(2)sinα的值.

分析 (1)利用同角三角函数的基本关系,半角公式求得$\frac{β}{2}$的正弦和余弦值,可得$\frac{β}{2}$的正切值.
(2)先求得sinβ、cos(α+β) 的值,再利用两角差的三角公式求得sinα=sin[(α+β)-β]的值.

解答 解:(1)∵已知$cosβ=-\frac{1}{3},sin({α+β})=\frac{7}{9}$,其中$α∈({0,\frac{π}{2}}),β∈({\frac{π}{2},π})$,∴$\frac{β}{2}$∈($\frac{π}{4}$,$\frac{π}{2}$),
∴sin$\frac{β}{2}$=$\sqrt{\frac{1-cosβ}{2}}$=$\frac{\sqrt{6}}{3}$,cos$\frac{β}{2}$=$\sqrt{\frac{1+cosβ}{2}}$=$\frac{\sqrt{3}}{3}$,tan$\frac{β}{2}$=$\frac{sin\frac{β}{2}}{cos\frac{β}{2}}$=$\sqrt{2}$.
(2)由(1)知,sinβ=$\sqrt{{1-cos}^{2}β}$=$\frac{2\sqrt{2}}{3}$,α+β∈($\frac{π}{2}$,π),∴cos(α+β)=-$\sqrt{{1-sin}^{2}(α+β)}$=-$\frac{4\sqrt{2}}{9}$,
∴sinα=sin[(α+β)-β]=sin(α+β)cosβ-cos(α+β)sinβ=$\frac{7}{9}•(-\frac{1}{3})$-(-$\frac{4\sqrt{2}}{9}$)•$\frac{2\sqrt{2}}{3}$=$\frac{1}{3}$.

点评 本题主要考查同角三角函数的基本关系,半角公式,两角差的三角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}前n项的和记为Sn,且a4=-5,a8=3.
(1)求数列{an}的通项公式;
(2)求Sn的最小值及其相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一组数据1,1,2,3,5,8,13,x,34,…中的x等于(  )
A.20B.21C.22D.23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足y=x2-2x+2,-1≤x≤1,则$\frac{y+3}{x+2}$的最小值是(  )
A.$\frac{4}{3}$B.$2\sqrt{13}-6$C.8D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.i是虚数单位,则$\frac{(-1+i)(2+i)}{i^2}$=(  )
A.3+iB.3-iC.1-3iD.-3-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了完成对某城市的工薪阶层是否赞成调整个人所得税税率的调查,随机抽取了60人,作出了他们的月收入频率分布直方图(如图),同时得到了他们月收入情况与赞成人数统计表(如表):
月收入(百元)赞成人数
[15,25)8
[25,35)7
[35,45)10
[45,55)6
[55,65)2
[65,75)2
(1)试根据频率分布直方图估计这60人的平均月收入;
(2)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求2人都不赞成的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)、g(x)都是定义在R上的函数,g(x)≠0,f'(x)g(x)<f(x)g'(x),f(x)=axg(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,在有穷数列$\left\{{\frac{f(n)}{g(n)}}\right\}$(n=1,2,…,10)中,任意取前k项相加,则前k项和不小于$\frac{63}{64}$的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.把函数$y=sin(4x+\frac{π}{6})$图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象向右平移$\frac{π}{3}$个单位,那么所得图象的一条对称轴方程为(  )
A.$x=-\frac{π}{2}$B.$x=-\frac{π}{4}$C.$x=\frac{π}{4}$D.$x=\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.据统计2016年“十一”黄金周哈尔滨太阳岛每天的游客人数服从正态分布N(2000,1002),则在此期间的某一天,太阳岛的人数不超过2300的概率为(  )
附;若X~N(μ,σ2
$\begin{array}{l}P(μ-σ<x≤μ+σ)=0.6826\\ P(μ-2σ<x≤μ+2σ)=0.9544\\ P(μ-3σ<x≤μ+3σ)=0.9974\end{array}$.
A.0.4987B.0.8413C.0.9772D.0.9987

查看答案和解析>>

同步练习册答案