分析 (1)等差数列{an}的公差设为d,运用等差数列的通项公式,解方程可得首项和公差,即可得到所求通项;
(2)运用等差数列的求和公式Sn=na1+$\frac{1}{2}$n(n-1)d,配方,结合二次函数的最值求法,即可得到所求最小值.
解答 解:(1)等差数列{an}的公差设为d,
a4=-5,a8=3.
可得a1+3d=-5,a1+7d=3,
解得a1=-11,d=2,
则an=a1+(n-1)d=-11+2(n-1)=2n-13,n∈N*;
(2)Sn=na1+$\frac{1}{2}$n(n-1)d=-11n+n(n-1)=n2-12n
=(n-6)2-36,
当n=6时,Sn取得最小值-36.
点评 本题考查等差数列的通项公式和求和公式,考查方程思想,以及运算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | ${\overline x_甲}<{\overline x_乙}$ | B. | s甲>s乙 | ||
| C. | 乙棉花的中位数为325.5mm | D. | 甲棉花的众数为322mm |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1] | B. | [1,+∞) | C. | [2,+∞) | D. | [3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等边三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 锐角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $3\sqrt{2}$ | D. | $2+\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-\frac{π}{2},\;-\frac{π}{3})$ | B. | $(-\frac{5π}{6},\;0)$ | C. | $(-\frac{π}{2},\;\frac{π}{3})$ | D. | $(-\frac{π}{6},\;0)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com