精英家教网 > 高中数学 > 题目详情
15.如图,抛物线E:x2=2py(p>0)的焦点为$(0,\frac{1}{4})$,圆心M在射线y=2x(x≥0)上且半径为1的圆M与y轴相切.
(Ⅰ)求抛物线E及圆M的方程;
(Ⅱ)过P(1,0)作两条相互垂直的直线,与抛物线E相交于A,B两点,与圆M相交于C,D两点,N为线段CD的中点,当${S_{△NAB}}=\frac{3}{2}$,求AB所在的直线方程.

分析 (Ⅰ)利用抛物线E:x2=2py(p>0)的焦点为$(0,\frac{1}{4})$,圆心M在射线y=2x(x≥0)上且半径为1的圆M与y轴相切,即可求抛物线E及圆M的方程;
(Ⅱ)联立$\left\{\begin{array}{l}y={x^2}\\ y=k(x-1)\end{array}\right.$⇒x2-kx+k=0$⇒\left\{\begin{array}{l}△={k^2}-4k>0\\{x_A}+{x_B}=k\\{x_A}•{x_B}=k\end{array}\right.$,又与直线AB垂直的直线CD与圆M相交,可得k的范围,利用${S_{△NAB}}=\frac{3}{2}$,求出k,即可求AB所在的直线方程.

解答 解:(Ⅰ)抛物线E:x2=2py(p>0)的焦点为$(0,\frac{1}{4})$,∴p=$\frac{1}{2}$,∴抛物线E:y=x2,…(3分)
∵圆心M在射线y=2x(x≥0)上且半径为1的圆M与y轴相切,
∴圆M的方程:(x-1)2+(y-2)2=1; …(6分)
(Ⅱ)设直线AB的斜率为k(k显然存在且不为零)
联立$\left\{\begin{array}{l}y={x^2}\\ y=k(x-1)\end{array}\right.$⇒x2-kx+k=0$⇒\left\{\begin{array}{l}△={k^2}-4k>0\\{x_A}+{x_B}=k\\{x_A}•{x_B}=k\end{array}\right.$…(8分)
又与直线AB垂直的直线CD与圆M相交,
则$-\frac{1}{k}∈(-∞,-\sqrt{3})∪(\sqrt{3},+∞)$即$-\frac{{\sqrt{3}}}{3}<k<\frac{{\sqrt{3}}}{3}$,而k2-4k>0,故$-\frac{{\sqrt{3}}}{3}<k<0$.${S_{△NAB}}=\frac{1}{2}|AB|•|NP|=\frac{1}{2}|AB|•d$(其中d表示圆心M到直线AB的距离)
=$\frac{1}{2}\sqrt{1+{k^2}}•\sqrt{{k^2}-4k}•\frac{2}{{\sqrt{1+{k^2}}}}=\sqrt{{k^2}-4k}$…(12分)
又${S_{△NAB}}=\frac{3}{2}$,所以${k^2}-4k=\frac{9}{4}$,解得$k=-\frac{1}{2}$或$k=\frac{9}{2}$(舍)
所以AB所在的直线方程为:$y=-\frac{1}{2}(x-1)$即$y=-\frac{1}{2}x+\frac{1}{2}$.…(15分)

点评 本题考查抛物线E及圆M的方程,考查直线与抛物线的位置关系,考查三角形面积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设p:函数f(x)=lg(x2-4x+a2)的定义域为R;q:a2-5a-6≥0.如果“p∨q”为真,且“p∧q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知直线l1:2x-my=1,l2:(m-1)x-y=1,若l1∥l2,则实数m的值为2或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A是实数集R的子集,如果x0∈R满足:对任意a>0,都存在x∈A,使得0<|x-x0|<a,则称x0为集合A的聚点,给出下列集合(其中e为自然对数的底):①{1+$\frac{1}{x}$|x>0};②{2x|x∈N};③{x2+x+2|x∈R};④{lnx|x>0且x≠e},其中,以1为聚点的集合有(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的半焦距为c,且b=c,椭圆的上顶点到右顶点的距离为2$\sqrt{3}$.
(1)求椭圆的方程;
(2)已知点F是椭圆的右焦点,C(m,0)是线段OF上一个动点(O为坐标原点),是否存在过点F且与x轴不垂直的直线l与椭圆交于A,B两点,使得AC|=|BC|,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{6}}}{3}$,直线l:x+y-1=0与C相交于A,B两点.
(Ⅰ)证明:线段AB的中点为定点,并求出该定点坐标;
(Ⅱ)设M(1,0),$\overrightarrow{MA}=λ\overrightarrow{BM}$,当$a∈({\frac{{\sqrt{7}}}{2},\sqrt{3}})$时,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线l1:(m-1)x-y+2m+1=0与圆C:(x+2)2+(y-3)2=$\sqrt{2}$的位置关系是(  )
A.相交B.相切C.相离D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知定点F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)曲线C是使得|RF1|+|RF2|为定值(大于|F1F2|)的点R的轨迹,且曲线C过点T(0,1).
(1)求曲线C的方程;
(2)若直线l过点F2,且与曲线C交于P,Q两点,当△F1PQ的面积取得最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图所示的算法框图中,语句“输出i”被执行的次数为34.

查看答案和解析>>

同步练习册答案