精英家教网 > 高中数学 > 题目详情
(2013•东至县一模)已知f(x)为偶数,且f(2+x)=f(2-x),当-2≤x≤0时,f(x)=2x,若n∈N*,an=f(n),则a2013=
1
2
1
2
分析:根据题意,可得函数f(x)的最小正周期为4,从而得出f(2013)=f(1),再利用函数为偶函数及当-2≤x≤0时的表达式,即可求出a2013的值.
解答:解:∵f(2+x)=f(2-x),
∴f(4+x)=f(2+(2+x))=f(2-(2+x))=f(-x)
又∵f(x)为偶数,即f(-x)=f(x)
∴f(4+x)=f(x),得函数f(x)的最小正周期为4
∴f(2013)=f(503×4+1)=f(1)
而f(-1)=2-1=
1
2
,可得f(1)=f(-1)=
1
2

因此,a2013=f(2013)=f(1)=
1
2

故答案为:
1
2
点评:本题给出函数的奇偶性和周期,求自变量2013对应的函数值.着重考查了函数的奇偶性、周期性和数列的函数特性等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东至县一模)函数y=
1-(
1
2
)
x
的定义域是
[0,+∞)
[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东至县一模)已知tanx=
1
3
,则cos2x=
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东至县一模)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=
3
asinC-ccosA

(1)求角A;
(2)若a=2,△ABC的面积为
3
,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东至县一模)若直角坐标平面内M、N两点满足:
①点M、N都在函数f(x)的图象上;
②点M、N关于原点对称,则称这两点M、N是函数f(x)的一对“靓点”.
已知函数f(x)=
3x,x≤0
x-3,x>0
则函数f(x)有
对“靓点”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东至县一模)若函数f(x)=a(x+1)p(x-1)q(a>0)在区间[-2,1]上的图象如图所示,则p,q的值可能是(  )

查看答案和解析>>

同步练习册答案