精英家教网 > 高中数学 > 题目详情
20.求和:S=$\sqrt{1+\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}}$+$\sqrt{1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}}$+$\sqrt{1+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}}$+…+$\sqrt{1+\frac{1}{{n}^{2}}+\frac{1}{(n+1)^{2}}}$.

分析 通过通分、裂项计算可知$\sqrt{1+\frac{1}{{n}^{2}}+\frac{1}{(n+1)^{2}}}$=1+$\frac{1}{n}$-$\frac{1}{n+1}$,进而并项相加即得结论.

解答 解:∵$\sqrt{1+\frac{1}{{n}^{2}}+\frac{1}{(n+1)^{2}}}$=$\sqrt{\frac{{n}^{2}(n+1)^{2}+(n+1)^{2}+{n}^{2}}{{n}^{2}(n+1)^{2}}}$
=$\sqrt{\frac{{n}^{4}+2{n}^{3}+3{n}^{2}+2n+1}{[{n(n+1)]}^{2}}}$
=$\sqrt{\frac{({{n}^{2}+n+1)}^{2}}{[{n(n+1)]}^{2}}}$
=$\frac{{n}^{2}+n+1}{n(n+1)}$
=1+$\frac{1}{n}$-$\frac{1}{n+1}$,
∴S=(1+1-$\frac{1}{2}$)+(1+$\frac{1}{2}$-$\frac{1}{3}$)+…+(1+$\frac{1}{n}$-$\frac{1}{n+1}$)
=n+1-$\frac{1}{n+1}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,裂项、并项相加是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设集合A={x|x≤-1或2<x<4},B={x|x<-3或x≥1},求:
(1)A∩B;
(2)A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、
CF∥OB交弧AB于点E、F,且BD=AC,现用渔网沿着DE、EO、OF、FC将池塘分成
如图所示的三种的养殖区域.若OA=1km,$∠AOB=\frac{π}{2}$,$∠EOF=θ(0<θ<\frac{π}{2})$.
(1)求区域Ⅱ的总面积;
(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元. 试问当θ为多少时,年总收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=$\frac{{x}^{2}}{2x-2}$,且4Sn•f($\frac{1}{{a}_{n}}$)=1,bn=-an•($\frac{1}{2}$)n,Tn为{bn}的前n项和,比较Tn与$\frac{1}{2}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\frac{{x}^{2}-1}{{x}^{2}-2x-3}$的值域为{y|y$≠\frac{1}{2}$,且y≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.$\frac{1}{2}$+$\frac{1}{2}$+$\frac{3}{8}$+…+$\frac{n}{{2}^{n}}$等于(  )
A.$\frac{{2}^{n}-n-1}{{2}^{n}}$B.$\frac{{2}^{n+1}-n-2}{{2}^{n}}$C.$\frac{{2}^{n}-n+1}{{2}^{n}}$D.$\frac{{2}^{n+1}-n+2}{{2}^{n}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知复数z=1+i,$\overline{z}$是z的共轭复数,则z$•\overline{z}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知:△ABC中,sinA•cos2$\frac{C}{2}$+sinC•cos2$\frac{A}{2}$=$\frac{3}{2}$sinB,求证:sinA+sinC=2sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)是R上的函数,且满足f(1)=0并且对任意的实数x、y都有f(x+y)-f(y)=x(x+2y+1),求f(x)的表达式.

查看答案和解析>>

同步练习册答案