精英家教网 > 高中数学 > 题目详情
12.$\frac{3+2i}{2-3i}$=(  )
A.1+iB.1-iC.iD.-i

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:$\frac{3+2i}{2-3i}$=$\frac{(3+2i)(2+3i)}{(2-3i)(2+3i)}=\frac{13i}{13}=i$.
故选:C.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.阅读程序框图,则该程序运行后输出的k的值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若$sin(π+α)=\frac{1}{3}$,则sinα=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2-4ax+b(a>0)在区间[0,1]上有最大值1和最小值-2.
(1)求a,b的值;
(2)若不等式f(x)≥mx在x∈(0,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列说法正确的序号是②④.
①第一象限角是锐角;
②函数$y={log_{\frac{1}{2}}}({{x^2}+2x-3})$的单调增区间为(-∞,-3);
③函数f(x)=|cosx|是周期为2π的偶函数;
④方程$x=tanx{,_{\;}}x∈({-\frac{π}{2},\frac{π}{2}})$只有一个解x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在$f(x)={(\frac{1}{x}+{x^2})^n}$的展开式中,第4项为常数项
(1)求f(x)的展开式中含x-3的项的系数;
(2)求f(x)的展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.曲线y=Asin2ωx+k(A>0,k>0)在区间$[0\;,\;\frac{π}{ω}]$上截直线y=4与y=-2所得的弦长相等且不为0,则A+k的取值范围是(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,c=5且b(2sinB+sinA)+(2a+b)sinA=2csinC.
(1)求C的值;
(2)若cosA=$\frac{4}{5}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=0.75sin(x+$\frac{π}{4}$)(x∈[-π,π])的递减区间是[-π,-$\frac{3π}{4}$],[$\frac{π}{4}$,π];
函数y=$\sqrt{3}$cos($\frac{1}{2}$x+$\frac{2π}{3}$)(x∈[0,2π])的递增区间是[$\frac{2π}{3}$,2π];
函数y=$\frac{3}{5}$sin(3x-$\frac{π}{6}$)(x∈R)的递增区间是[-$\frac{π}{9}$+$\frac{2kπ}{3}$,$\frac{2π}{9}$+$\frac{2kπ}{3}$],k∈Z.

查看答案和解析>>

同步练习册答案