精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=x(x-a)(x-b).
(1)若a=0,b=3,求y=f(x)的切线中与y轴垂直的切线方程.
(2)若a=0,b=3,函数f(x)在(t,t+3)上既能取到极大值,又能取到极小值,求t的取值范围;
(3)当a=0时,$\frac{f(x)}{x}$+lnx+1≥0对任意的x∈[$\frac{1}{2}$,+∞)恒成立,求b的取值范围.

分析 (1)若a=0,b=3,求导数,令f′(x)=得x=0或2,即可求y=f(x)的切线中与y轴垂直的切线方程.
(2)得出函数f(x)在x=0处取得极大值,在x=2处取得极小值.函数f(x)在(t,t+3)上既能取到极大值,又能取到极小值,则只要t<0且t+3>2即可;
(3)问题转化为b≤x+$\frac{lnx}{x}$+$\frac{1}{x}$在对任意的x∈[$\frac{1}{2}$,+∞)恒成立.令g(x)=x+$\frac{lnx}{x}$+$\frac{1}{x}$,则g′(x)=$\frac{{x}^{2}-lnx}{{x}^{2}}$.求出函数的最小值,即可得出结论.

解答 解:(1)当a=0,b=3时,f(x)=x3-3x2,f′(x)=3x2-6x,
令f′(x)=得x=0或2,∴y=0或-4;
(2)当a=0,b=3时,f(x)=x3-3x2,f′(x)=3x2-6x,
令令f′(x)=得x=0或2,根据导数的符号可以得出函数f(x)在x=0处取得极大值,在x=2处取得极小值.
函数f(x)在(t,t+3)上既能取到极大值,又能取到极小值,则只要t<0且t+3>2即可,
即只要-1<t<0即可.
所以t的取值范围是(-1,0).
(3)当a=0时,$\frac{f(x)}{x}$+lnx+1≥0对任意的x∈[$\frac{1}{2}$,+∞)恒成立,
即x2-bx+lnx+1≥0对任意的x∈[$\frac{1}{2}$,+∞)恒成立,
也即b≤x+$\frac{lnx}{x}$+$\frac{1}{x}$在对任意的x∈[$\frac{1}{2}$,+∞)恒成立.
令g(x)=x+$\frac{lnx}{x}$+$\frac{1}{x}$,则g′(x)=$\frac{{x}^{2}-lnx}{{x}^{2}}$.
记m(x)=x2-lnx,则m′(x)=$\frac{2{x}^{2}-1}{x}$,
则这个函数在其定义域内有唯一的极小值点x=$\frac{\sqrt{2}}{2}$,故也是最小值点,
所以m(x)≥$\frac{1}{2}-ln\frac{\sqrt{2}}{2}$>0,从而g′(x)>0,
所以函数g(x)在[$\frac{1}{2}$,+∞)单调递增.函数g(x)min=$\frac{5}{2}$-2ln2.
故只要b≤$\frac{5}{2}$-2ln2即可.所以b的取值范围是(-∞,$\frac{5}{2}$-2ln2].  (8分)

点评 本题考查导数知识的综合运用,考查导数的几何意义、极值,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求与椭圆$\frac{x^2}{16}+\frac{y^2}{25}=1$共焦点,且过点(-2,$\sqrt{10}$)的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(I)将T表示为X的函数;
(II)根据直方图求利润T不少于57 000元的频率;
(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值 (例如:若需求量X∈[100,110),则取X=105),估计T的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)是偶函数,且在(0,+∞)上是增函数,又f(5)=0,则使f(x)>0的x的取值范围是(  )
A.-5<x<0或x>5B.x<-5或x>5C.-5<x<5D.x<-5或0<x<5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若R上的可导函数f(x)满足f(x)=x2-xf'(1)+1,则f'(0)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.集合A={x|-3<x<7},B={x|t+1<x<2t-1},若B⊆A,则实数t的取值范围是(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.市场上有一种新型的强力洗衣粉,特点是去污速度快,已知每投放a(1≤a≤4且a∈R)个单位的洗衣粉液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=af(x),其中f(x)=$\left\{\begin{array}{l}\frac{16}{8-x}-1,0≤x≤4\\ 5-\frac{1}{2}x,4<x≤10\end{array}$,若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起有效去污的作用.
(1)若只投放一次4个单位的洗衣液,则有效去污时间可能达几分钟?
(2)若先投放2个单位的洗衣液,6分钟后投放a个单位的洗衣液,要使接下来的4分钟中能够持续有效去污,试求a的最小值(精确到0.1,参考数据:$\sqrt{2}$取1.4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(sinωx+cosωx,\sqrt{3}cosωx)$,$\overrightarrow n=(cosωx-sinωx,2sinωx)$,其中ω>0,若f(x)相邻两对称轴间的距离为$\frac{π}{2}$.
(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别为角A、B、C的对边,a=$\sqrt{3}$,b+c=3,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知y=f(x)的定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{\frac{5}{4}sin\frac{π}{4}x,0≤x≤2}\\{(\frac{1}{2})^{x}+1,x>2}\end{array}\right.$,若关于x的方程[f(x)]2+af(x)+b=0(a,b∈R)有且仅有6个不同的实数根,在实数a的取值范围是(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1).

查看答案和解析>>

同步练习册答案