精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(sinωx+cosωx,\sqrt{3}cosωx)$,$\overrightarrow n=(cosωx-sinωx,2sinωx)$,其中ω>0,若f(x)相邻两对称轴间的距离为$\frac{π}{2}$.
(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别为角A、B、C的对边,a=$\sqrt{3}$,b+c=3,f(A)=1,求△ABC的面积.

分析 (Ⅰ)由两向量的坐标,利用平面向量的数量积运算法则列出f(x)解析式,找出ω的值,代入周期公式即可求出函数f(x)的最小正周期,利用正弦函数的单调性即可确定出f(x)单调递增区间;
(Ⅱ)由f(A)=1及第一问的解析式确定出A的度数,再由a,b+c的值,利用余弦定理求出bc的值,利用三角形面积公式即可求出三角形ABC面积.

解答 解:(Ⅰ)依题意,函数f(x)=$\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(sinωx+cosωx,\sqrt{3}cosωx)$,$\overrightarrow n=(cosωx-sinωx,2sinωx)$,
得f(x)=cos2ωx+$\sqrt{3}$sin2ωx=2($\frac{\sqrt{3}}{2}$sin2ωx+$\frac{1}{2}$cos2ωx)=2sin(2ωx+$\frac{π}{6}$),
ω>0,若f(x)相邻两对称轴间的距离为$\frac{π}{2}$.
T=π,∴ω=1,
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z,
则f(x)的递增区间是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z;
(Ⅱ)由f(A)=2sin(2A+$\frac{π}{6}$)=1,
∴sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<A<π,
∴0<2A<2π,即$\frac{π}{6}$<2A+$\frac{π}{6}$<$\frac{13π}{6}$,
∴2A+$\frac{π}{6}$=$\frac{5π}{6}$,即A=$\frac{π}{3}$,
∵a=$\sqrt{3}$,b+c=3,
∴根据余弦定理得,3=b2+c2-2bccosA=b2+c2-bc=(b+c)2-3bc=9-3bc,
∴bc=2,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×2×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.

点评 此题考查了余弦定理的应用,平面向量的数量积运算,正弦函数的单调性,三角函数的周期性及其求法,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图1,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的“特征三角形”.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.若椭圆C1:$\frac{{x}^{2}}{4}$+y2=1,直线L:y=mx+n
(1)已知椭圆D:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)与椭圆C1是相似椭圆,求b的值及椭圆D与椭圆C1的相似比;
(2)求点P(0,1)到椭圆C1上点的最大距离
(3)如图2,设直线L与椭圆E:$\frac{{x}^{2}}{4{λ}^{2}}$+$\frac{{y}^{2}}{{λ}^{2}}$=1(λ>1)相交于A、B两点,与椭圆C1交于C、D两点,求证:|AC|=|BD|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x(x-a)(x-b).
(1)若a=0,b=3,求y=f(x)的切线中与y轴垂直的切线方程.
(2)若a=0,b=3,函数f(x)在(t,t+3)上既能取到极大值,又能取到极小值,求t的取值范围;
(3)当a=0时,$\frac{f(x)}{x}$+lnx+1≥0对任意的x∈[$\frac{1}{2}$,+∞)恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,已知a=7,b=5,c=3,则角A大小为(  )
A.120°B.90°C.60°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\sqrt{3}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{6}$个单位后关于原点对称,则φ等于(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\frac{{x}^{2}-2x+9}{x}$(x<0)最大值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}满足:a1=$\frac{4}{3}$,且an+1=$\frac{4(n+1){a}_{n}}{3{a}_{n}+n}$,(n∈N+),则$\frac{1}{{a}_{1}}$+$\frac{2}{{a}_{2}}$+$\frac{3}{{a}_{3}}$+…+$\frac{2016}{{a}_{2016}}$=$2015\frac{2}{3}+\frac{1}{3•{4}^{2016}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线l1:ax+4y-2=0直线l2:2x+y+2=0,且两条直线互相垂直.
(1)直线l1与l2的交点坐标;
(2)已知圆C:x2+y2+6x+8y+21=0,判断直线l1与圆C有无公共点,有几个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=|x|+$\frac{a}{x^2}$(其中a∈R)的图象不可能是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案