精英家教网 > 高中数学 > 题目详情
5.函数f(x)=$\sqrt{3}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{6}$个单位后关于原点对称,则φ等于(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

分析 函数f(x)=$\sqrt{3}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{6}$个单位后的解析式g(x),由于平移后的图象关于原点对称,故g(0)=0,解得答案.

解答 解:函数f(x)=$\sqrt{3}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{6}$个单位后,
得到g(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$+φ)(|φ|<$\frac{π}{2}$)的图象,
由于平移后的图象关于原点对称,
故g(0)=$\sqrt{3}$sin($\frac{π}{3}$+φ)=0,
由|φ|<$\frac{π}{2}$得:
φ=-$\frac{π}{3}$,
故选:D

点评 本题考查的知识点是函数图象的平移变换,三角函数的对称性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设f(x)=$\left\{\begin{array}{l}{{k}^{2}x+{a}^{2}-k(x≥0)}\\{{x}^{2}+({a}^{2}+4a)x+(2-a)^{2}(x<0)}\end{array}\right.$,其中a∈R,若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x2)=f(x1)成立,则k的取值范围为(  )
A.[-20,-4]B.[-30,-9]C.[-4,0]D.[-9,-4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若R上的可导函数f(x)满足f(x)=x2-xf'(1)+1,则f'(0)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.市场上有一种新型的强力洗衣粉,特点是去污速度快,已知每投放a(1≤a≤4且a∈R)个单位的洗衣粉液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=af(x),其中f(x)=$\left\{\begin{array}{l}\frac{16}{8-x}-1,0≤x≤4\\ 5-\frac{1}{2}x,4<x≤10\end{array}$,若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起有效去污的作用.
(1)若只投放一次4个单位的洗衣液,则有效去污时间可能达几分钟?
(2)若先投放2个单位的洗衣液,6分钟后投放a个单位的洗衣液,要使接下来的4分钟中能够持续有效去污,试求a的最小值(精确到0.1,参考数据:$\sqrt{2}$取1.4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x>0,y>0且x+y=xy,则x+y的取值范围是(  )
A.(0,1]B.[2,+∞)C.(0,4]D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(sinωx+cosωx,\sqrt{3}cosωx)$,$\overrightarrow n=(cosωx-sinωx,2sinωx)$,其中ω>0,若f(x)相邻两对称轴间的距离为$\frac{π}{2}$.
(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别为角A、B、C的对边,a=$\sqrt{3}$,b+c=3,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=x-$\frac{1}{x}$的图象关于(  )
A.y轴对称B.直线y=x对称C.坐标原点对称D.直线y=-x对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过两直线l1:2x-y+7=0和l2:y=1-x的交点和原点的直线方程为(  )
A.3x+2y=0B.3x-2y=0C.2x+3y=0D.2x-3y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$sin({x+\frac{π}{6}})=\frac{1}{3}$,则$tan({2x+\frac{π}{3}})$等于(  )
A.$\frac{7}{9}$B.$±\frac{7}{9}$C.$\frac{{4\sqrt{2}}}{7}$D.$±\frac{{4\sqrt{2}}}{7}$

查看答案和解析>>

同步练习册答案