精英家教网 > 高中数学 > 题目详情
已知α是第三象限角,sinα=-
3
5
,则tanα=
 
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:由条件利用同角三角函数的基本关系求得tanα的值.
解答: 解:∵α是第三象限角,sinα=-
3
5
,∴cosα=-
1-sin2α
=-
4
5

则tanα=
sinα
cosα
=
3
4

故答案为:
3
4
点评:本题主要考查同角三角函数的基本关系的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆(x-1)2+(y-2)2=4上的点到直线x-y+5=0的距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=2,an+1=λann+1+(2-λ)2n(n∈N*),其中λ>0,则a2014=(  )
A、2014λ2014+22014
B、2013λ2013+22013
C、2014λ2013+22013
D、2013λ2014+22014

查看答案和解析>>

科目:高中数学 来源: 题型:

A
2
6
=(  )
A、10B、30C、60D、120

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-(6-2m)x-4my+5m2-6m=0,定直线l经过点A(1,0),若对任意的实数m,定直线l被圆C截得的弦长始终为定值A,求得此定值A等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(-π,π)上的函数f(x)=xsinx+cosx,则f(x)的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
=(1,1),
b
=(1,-1),
c
=(-1,2),则
c
等于(  )
A、-
1
2
a
+
3
2
b
B、
1
2
a
-
3
2
b
C、
3
2
a
-
1
2
b
D、-
3
2
a
+
1
2
b

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各题:
(Ⅰ)求值:(0.0081)
1
4
-[(-9)2×(
7
8
)
0
]
1
2
×[
5
3
×81- 0.25+(3
3
8
)
2
3
]
1
2
-27
1
3

(Ⅱ)若x=
7-4
3
,求值:
x3-1
x2+x+1
-
x2-2x+1
x2-x

查看答案和解析>>

同步练习册答案