| A. | $\sqrt{2}$ | B. | $-\sqrt{2}$ | C. | ±1 | D. | $±\sqrt{2}$ |
分析 根据条件$|{2\overrightarrow{OA}-3\overrightarrow{OB}}|=|{2\overrightarrow{OA}+3\overrightarrow{OB}}|$,两条平方后,可得-12$\overrightarrow{0A}•\overrightarrow{OB}$=12$\overrightarrow{0A}•\overrightarrow{OB}$,即$\overrightarrow{0A}•\overrightarrow{OB}$=0.
那么∠AOB=90°,直线x+y-a=0的斜率k=-1,直线过($-\sqrt{2}$,0)或($\sqrt{2}$,0).即可得实数a的值.
解答 解:由题意,$|{2\overrightarrow{OA}-3\overrightarrow{OB}}|=|{2\overrightarrow{OA}+3\overrightarrow{OB}}|$,
两条平方,可得-12$\overrightarrow{0A}•\overrightarrow{OB}$=12$\overrightarrow{0A}•\overrightarrow{OB}$,即$\overrightarrow{0A}•\overrightarrow{OB}$=0.
∴∠AOB=90°,
直线x+y-a=0的斜率k=-1,
直线必过($-\sqrt{2}$,0)或($\sqrt{2}$,0).
当x=$-\sqrt{2}$,y=0时,a=$\sqrt{2}$.
当x=$\sqrt{2}$,y=0时,a=-$\sqrt{2}$.
故选D.
点评 本题主要考查直线和圆的位置关系的判断.向量的运用.属于基础题
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{1}{2}$ | C. | -$\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (0,+∞) | C. | (1,+∞) | D. | (4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,0] | C. | [2,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{3}{7}$ | C. | $\frac{4}{11}$ | D. | $\frac{4}{13}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com