精英家教网 > 高中数学 > 题目详情
10.已知定义在R上的可导函数f(x)的导函数为f'(x),满足f'(x)<f(x),且f(x+3)为偶函数,f(6)=1,则不等式f(x)>ex的解集为(  )
A.(-∞,0)B.(0,+∞)C.(1,+∞)D.(4,+∞)

分析 令g(x)=$\frac{f(x)}{{e}^{x}}$,利用导数和已知即可得出其单调性.再利用函数的对称性和已知可得g(0)=1,从而求得不等式f(x)>ex的解集.

解答 解:设g(x)=$\frac{f(x)}{{e}^{x}}$,则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$.
∵f′(x)<f(x),∴g′(x)<0.∴函数g(x)是R上的减函数,
∵函数f(x+3)是偶函数,
∴函数f(-x+3)=f(x+3),∴函数关于x=3对称,∴f(0)=f(6)=1,
原不等式等价为g(x)>1,∴不等式f(x)<ex等价g(x)>1,即g(x)>g(0),
∵g(x)在R上单调递减,∴x<0.
∴不等式f(x)>ex的解集为(-∞,0).
故选:A

点评 本题考查了利用导数研究函数的单调性、利用函数的单调性求解不等式,体现了数学转化思想方法,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=cosωx•sin(ωx-$\frac{π}{3}$)+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{4}$(ω>0,x∈R),且函数y=f(x)图象的一个对称中心到它对称轴的最近距离为$\frac{π}{4}$.
(1)求ω的值及f(x)的对称轴方程;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=0,sinB=$\frac{4}{5}$,a=$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,B为其左支上一点,线段BF与双曲线的一条渐近线相交于A,且($\overrightarrow{OF}$-$\overrightarrow{OB}$)$•\overrightarrow{OA}$=0,2$\overrightarrow{OA}$=$\overrightarrow{OB}$+$\overrightarrow{OF}$(O为坐标原点),则双曲线的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x1,x2,…,x10为1,2,…,10的一个排列,则满足对任意正整数m,n,且1≤m<n≤10,都有xm+m≤xn+n成立的不同排列的个数为(  )
A.512B.256C.255D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过点O(0,0)作直线与圆(x-4$\sqrt{5}$)2+(y-8)2=169相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为(  )
A.$\frac{9}{10}$B.$\frac{15}{32}$C.$\frac{9}{32}$D.$\frac{7}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图中网格纸的小正方形的边长是1,复平面内点Z所表示的复数z满足(z1-i)•z=1,则复数z1=(  )
A.-$\frac{2}{5}+\frac{4}{5}$iB.$\frac{2}{5}+\frac{4}{5}$iC.$\frac{2}{5}-\frac{4}{5}$iD.-$\frac{2}{5}-\frac{4}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线x+y-a=0与圆x2+y2=2交于A、B两点,O点坐标原点,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$满足条件$|{2\overrightarrow{OA}-3\overrightarrow{OB}}|=|{2\overrightarrow{OA}+3\overrightarrow{OB}}|$,则实数a的值为(  )
A.$\sqrt{2}$B.$-\sqrt{2}$C.±1D.$±\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x,y满足约束条件$\left\{{\begin{array}{l}{x-y+1≤0}\\{x+y-9≤0}\\{x≥1}\end{array}}\right.$,则z=5x+3y的最大值为35.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x)+1,-1≤x<k}\\{{x}^{3}-3x+2,k≤x≤a}\end{array}\right.$,若存在k使得函数f(x)的值域为[0,2],则实数a的取值范围是(  )
A.[$\frac{1}{2}$,$\sqrt{3}$]B.[1,$\sqrt{3}$]C.(-1,$\sqrt{3}$]D.(-1,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

同步练习册答案