精英家教网 > 高中数学 > 题目详情
15.如图中网格纸的小正方形的边长是1,复平面内点Z所表示的复数z满足(z1-i)•z=1,则复数z1=(  )
A.-$\frac{2}{5}+\frac{4}{5}$iB.$\frac{2}{5}+\frac{4}{5}$iC.$\frac{2}{5}-\frac{4}{5}$iD.-$\frac{2}{5}-\frac{4}{5}$i

分析 由图可知:z=2+i.再利用复数的运算法则即可得出.

解答 解:由图可知:z=2+i.
∴(z1-i)•z=1,
则复数z1=i+$\frac{1}{2+i}$=i+$\frac{2-i}{(2+i)(2-i)}$=i+$\frac{2-i}{5}$=$\frac{2}{5}$+$\frac{4}{5}$i.
故选:B.

点评 本题考査了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知f(x)=$\sqrt{3}$cos2x-2sinxcosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在锐角△ABC中,角A、B、C的对边分别是a、b、c,f(A)=-$\sqrt{3}$,a=$\sqrt{3}$,b=$\sqrt{2}$,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a∈R,求关于x的不等式ax2-3x-1≥0(x<0)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}$m(x-1)2-2x+3+lnx(m≥1).
(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];
(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的可导函数f(x)的导函数为f'(x),满足f'(x)<f(x),且f(x+3)为偶函数,f(6)=1,则不等式f(x)>ex的解集为(  )
A.(-∞,0)B.(0,+∞)C.(1,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=3x-x3,x∈R.
(1)求f'(x)在[-2,3]上的最大值和最小值;
(2)设曲线y=f(x)与x轴正半轴的交点为P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={x|x≤0或x≥2},B={x|x<1},则集合A∩B=(  )
A.(-∞,0)B.(-∞,0]C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,正方形ABCD中,AC与BD交于O,$\overrightarrow{BE}$=$\frac{3}{4}$$\overrightarrow{BD}$,$\overrightarrow{CF}$=$\frac{1}{4}$$\overrightarrow{CB}$,若$\overrightarrow{BD}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{OF}$,则λ+μ的值为(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,E是边长为2的正方形ABCD的AB边的中点,将△AED与△BEC分别沿ED、EC折起,使得点A与点B重合,记为点P,得到三棱锥P-CDE.
(Ⅰ)求证:平面PED⊥平面PCD;
(Ⅱ)求点P到平面CDE的距离.

查看答案和解析>>

同步练习册答案