精英家教网 > 高中数学 > 题目详情
5.如图,E是边长为2的正方形ABCD的AB边的中点,将△AED与△BEC分别沿ED、EC折起,使得点A与点B重合,记为点P,得到三棱锥P-CDE.
(Ⅰ)求证:平面PED⊥平面PCD;
(Ⅱ)求点P到平面CDE的距离.

分析 (Ⅰ)通过证明PE⊥PD,PE⊥PC证明PE⊥平面PCD,然后推出平面PED⊥平面PCD.
(Ⅱ)设点P到平面CDE的距离为h,通过VE-PCD=VP-ECD,求解即可.

解答 (Ⅰ)证明:∵∠A=∠B=90°,∴PE⊥PD,PE⊥PC.
∵PD交PC于点P,PC,PD在平面PCD内,∴PE⊥平面PCD,
∵PE在平面PED内,∴平面PED⊥平面PCD.
(Ⅱ)解:设点P到平面CDE的距离为h,
依题意可知,三角形CDE是底边长为2,高为2的三角形,
所以其面积为$\frac{1}{2}×2×2=2$.
由(Ⅰ)知PE⊥平面PCD,易知△PCD是边长为2的等边三角形,其面积为$\frac{{\sqrt{3}}}{4}×{2^2}=\sqrt{3}$,PE=1,
所以${V_{E-PCD}}=\frac{1}{3}×\sqrt{3}×1=\frac{{\sqrt{3}}}{3}$,
∵VE-PCD=VP-ECD,∴$\frac{1}{3}×2×h=\frac{{\sqrt{3}}}{3}$,∴$h=\frac{{\sqrt{3}}}{2}$.

点评 本题考查直线与平面垂直,平面与平面垂直的判定定理的应用,几何体的体积的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图中网格纸的小正方形的边长是1,复平面内点Z所表示的复数z满足(z1-i)•z=1,则复数z1=(  )
A.-$\frac{2}{5}+\frac{4}{5}$iB.$\frac{2}{5}+\frac{4}{5}$iC.$\frac{2}{5}-\frac{4}{5}$iD.-$\frac{2}{5}-\frac{4}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的三个内角A,B,C的对边分别为a,b,c,若b=c-2bcosA.
(1)求证:A=2B;
(2)若5b=3c,$a=4\sqrt{6}$,求BC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=PB,E,F分别是PA,PB的中点.
(1)在图中画出过点E,F的平面α,使得α∥平面PCD(须说明画法,并给予证明);
(2)若过点E,F的平面α∥平面PCD且截四棱锥P-ABCD所得截面的面积为$\frac{3\sqrt{2}}{2}$,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x)+1,-1≤x<k}\\{{x}^{3}-3x+2,k≤x≤a}\end{array}\right.$,若存在k使得函数f(x)的值域为[0,2],则实数a的取值范围是(  )
A.[$\frac{1}{2}$,$\sqrt{3}$]B.[1,$\sqrt{3}$]C.(-1,$\sqrt{3}$]D.(-1,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若数列{an}满足${a_1}=\frac{1}{{{2^{19}}}}$,${a_{n+1}}={2^{20}}a_n^2$,则a1a2…an的最小值为2-69

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC的三个内角A、B、C所对的边分别为a、b、c,1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$.
(1)求A的大小;
(2)若△ABC为锐角三角形,求函数y=2sin2B-2cosBcosC的取值范围;
(3)现在给出下列三个条件:①a=1;②2c-($\sqrt{3}$+1)b=0;③B=45°,试从中再选择两个条件,以确定△ABC,求出所确定的△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设[x]表示不小于实数x的最小整数,如[2.6]=3,[-3.5]=-3.已知函数f(x)=[x]2-2[x],若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,则k的取值范围是(  )
A.$[{-\frac{5}{2},-1})∪[2,5)$B.$[{-1,-\frac{2}{3}})∪[5,10)$C.$({-\frac{4}{3},-1}]∪[5,10)$D.$[{-\frac{4}{3},-1}]∪[5,10)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若一个圆锥的母线与底面所成的角为$\frac{π}{6}$,体积为125π,则此圆锥的高为5.

查看答案和解析>>

同步练习册答案