17£®¡÷ABCµÄÈý¸öÄÚ½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢c£¬1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$£®
£¨1£©ÇóAµÄ´óС£»
£¨2£©Èô¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬Çóº¯Êýy=2sin2B-2cosBcosCµÄȡֵ·¶Î§£»
£¨3£©ÏÖÔÚ¸ø³öÏÂÁÐÈý¸öÌõ¼þ£º¢Ùa=1£»¢Ú2c-£¨$\sqrt{3}$+1£©b=0£»¢ÛB=45¡ã£¬ÊÔ´ÓÖÐÔÙÑ¡ÔñÁ½¸öÌõ¼þ£¬ÒÔÈ·¶¨¡÷ABC£¬Çó³öËùÈ·¶¨µÄ¡÷ABCµÄÃæ»ý£®

·ÖÎö £¨1£©¸ù¾ÝÇл¯ÏÒ¡¢Á½½ÇºÍµÄÕýÏÒ¹«Ê½ºÍÓÕµ¼¹«Ê½»¯¼òÒÑÖªµÄʽ×Ó£¬ÓÉÌØÊâ½ÇµÄÈý½Çº¯ÊýÖµÇó³öA£»
£¨2£©ÓÉ£¨1£©ºÍÄڽǺͶ¨Àí±íʾ³öC£¬´úÈë½âÎöʽÀûÓöþ±¶½Ç¹«Ê½£¬Á½½ÇºÍÓë²îºÍ¹«Ê½»¯¼ò£¬¸ù¾ÝÈñ½ÇÈý½ÇÐÎÁгö²»µÈʽ×éÇó³öBµÄ·¶Î§£¬ÓÉÕýÏÒº¯ÊýµÄÐÔÖÊÇó³öº¯ÊýµÄÖµÓò£»
£¨3£©·½°¸Ò»£ºÑ¡Ôñ¢Ù¢Ú£¬ÓÉÌõ¼þºÍÓàÏÒ¶¨ÀíÁгö·½³ÌÇó³öbµÄÖµ£¬´úÈëÈý½ÇÐεÄÃæ»ý¹«Ê½Çó½â¼´¿É£»
·½°¸¶þ£ºÑ¡Ôñ¢Ù¢Û£¬ÓÉÄڽǺͶ¨ÀíºÍÕýÏÒ¶¨Àí·Ö±ðÇó³öC¡¢c£¬ÈëÈý½ÇÐεÄÃæ»ý¹«Ê½Çó½â¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ£¬1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$£¬
ÓÉÕýÏÒ¶¨ÀíµÃ£¬1+$\frac{sinAcosB}{cosAsinB}$=$\frac{sin£¨A+B£©}{cosAsinB}$=$\frac{2sinC}{sinB}$£¬
¡àcosA=$\frac{1}{2}$£¬¡àA=$\frac{¦Ð}{3}$£»
£¨2£©ÒòΪA+B+C=¦Ð£¬A=$\frac{¦Ð}{3}$£¬ËùÒÔB+C=$\frac{2¦Ð}{3}$£¬
Ôòy=2sin2B-2cosBcosC=1-cos2B-2sinBcos£¨$\frac{2¦Ð}{3}$-B£©=$\frac{3}{2}$-sin£¨2B+$\frac{¦Ð}{6}$£©
ÓÖ¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬Ôò$\frac{¦Ð}{6}$£¼B£¼$\frac{¦Ð}{2}$£¬¡à$\frac{¦Ð}{2}$£¼2B+$\frac{¦Ð}{6}$£¼$\frac{7¦Ð}{6}$£¬ËùÒÔsin£¨2B+$\frac{¦Ð}{6}$£©¡Ê£¨-$\frac{1}{2}$£¬1£©£¬
ËùÒÔy¡Ê£¨$\frac{1}{2}$£¬2£©£»
£¨3£©·½°¸Ò»£ºÑ¡Ôñ¢Ù¢Ú£¬¿ÉÈ·¶¨¡÷A BC£¬
ÒòΪA=60¡ã£¬a=1£¬2c-£¨$\sqrt{3}$+1£©b=0£¬
ÓÉÓàÏÒ¶¨ÀíµÃ£º$1={b}^{2}+£¨\frac{\sqrt{3}+1}{2}b£©^{2}-2b•\frac{\sqrt{3}+1}{2}b•\frac{1}{2}$£¬
ÕûÀíµÃ£ºb2=$\frac{2}{3}$£¬b=$\frac{\sqrt{6}}{3}$£¬c=$\frac{\sqrt{6}+3\sqrt{2}}{6}$£¬
ËùÒÔS¡÷ABC=$\frac{1}{2}•\frac{\sqrt{6}}{3}•\frac{\sqrt{6}+3\sqrt{2}}{6}•\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}+3}{12}$
·½°¸¶þ£ºÑ¡Ôñ¢Ù¢Û£¬¿ÉÈ·¶¨¡÷A BC£¬
ÒòΪ A=60¡ã£¬B=45¡ã£¬ÔòC=75¡ã£¬
ÓÉÕýÏÒ¶¨Àíb=$\frac{1•sin45¡ã}{sin60¡ã}$=$\frac{\sqrt{6}}{3}$£¬
ËùÒÔS¡÷ABC=$\frac{1}{2}•1•\frac{\sqrt{6}}{3}•\frac{\sqrt{6}+\sqrt{2}}{4}$=$\frac{\sqrt{3}+3}{12}$£®

µãÆÀ ±¾Ì⿼²éÕýÏÒ¶¨ÀíºÍÓàÏÒ¶¨ÀíµÄ×ÛºÏÓ¦Óã¬Á½½ÇºÍÓë²îµÄ¹«Ê½¡¢¶þ±¶½Ç¹«Ê½µÄÓ¦Óã¬ÒÔ¼°ÕýÏÒº¯ÊýµÄÐÔÖÊ£¬×¢ÒâÈñ½Ç½ÇµÄ·¶Î§£¬¿¼²é»¯¼ò¡¢±äÐÎÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®É輯ºÏA={x|x¡Ü0»òx¡Ý2}£¬B={x|x£¼1}£¬Ôò¼¯ºÏA¡ÉB=£¨¡¡¡¡£©
A£®£¨-¡Þ£¬0£©B£®£¨-¡Þ£¬0]C£®[2£¬+¡Þ£©D£®£¨2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Æ½ÐÐËıßÐÎABCDÖУ¬$\overrightarrow{AB}=¦Ë\overrightarrow{AC}+¦Ì\overrightarrow{DB}$£¬Ôò¦Ë+¦Ì=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬EÊDZ߳¤Îª2µÄÕý·½ÐÎABCDµÄAB±ßµÄÖе㣬½«¡÷AEDÓë¡÷BEC·Ö±ðÑØED¡¢ECÕÛÆð£¬Ê¹µÃµãAÓëµãBÖØºÏ£¬¼ÇΪµãP£¬µÃµ½ÈýÀâ×¶P-CDE£®
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæPED¡ÍÆ½ÃæPCD£»
£¨¢ò£©ÇóµãPµ½Æ½ÃæCDEµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬M¡¢N·Ö±ðΪAB¡¢ADÉϵĵ㣬ÇÒ$\overrightarrow{AM}$=$\frac{4}{5}$$\overrightarrow{AB}$£¬$\overrightarrow{AN}$=$\frac{2}{3}$$\overrightarrow{AD}$£¬Á¬½ÓAC¡¢MN½»ÓÚPµã£¬Èô$\overrightarrow{AP}$=¦Ë$\overrightarrow{AC}$£¬Ôò¦ËµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{3}{5}$B£®$\frac{3}{7}$C£®$\frac{4}{11}$D£®$\frac{4}{13}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬ÒÑÖª¡÷OAB£¬ÈôµãCÂú×ã$\overrightarrow{AC}=2\overrightarrow{CB}£¬\overrightarrow{OC}=¦Ë\overrightarrow{OA}+¦Ì\overrightarrow{OB}£¨¦Ë£¬¦Ì¡ÊR£©$£¬Ôò$\frac{1}{¦Ë}+\frac{1}{¦Ì}$=
£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{2}{3}$C£®$\frac{2}{9}$D£®$\frac{9}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{bn}Âú×ãbn=|$\frac{{a}_{n}+2}{{a}_{n}-1}$|£¬ÆäÖÐa1=2£¬an+1=$\frac{2}{{a}_{n}+1}$
£¨1£©Çób1£¬b2£¬b3£¬²¢²ÂÏëbnµÄ±í´ïʽ£¨²»±ØÐ´³öÖ¤Ã÷¹ý³Ì£©£»
£¨2£©Éècn=$\frac{1}{lo{g}_{2}{b}_{n}•lo{g}_{2}{b}_{n+1}}$£¬ÊýÁÐ|cn|µÄǰÏîºÍΪSn£¬ÇóÖ¤Sn£¼$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÈôµÈ±ÈÊýÁÐ{an}£¬Ç°nÏîºÍSn£¬ÇÒa2a3=2a1£¬$\frac{5}{4}$Ϊa4Óë2a7µÄµÈ²îÖÐÏÔòS4=£¨¡¡¡¡£©
A£®29B£®30C£®31D£®33

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Éè¡÷ABCµÄÄÚ½ÇA£¬B£¬C µÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬ÒÑÖª b+acos C=0£¬sin A=2sin£¨A+C£©£®
£¨1£©Çó½ÇCµÄ´óС£»
£¨2£©Çó$\frac{c}{a}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸