精英家教网 > 高中数学 > 题目详情
2.如图,已知△OAB,若点C满足$\overrightarrow{AC}=2\overrightarrow{CB},\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}(λ,μ∈R)$,则$\frac{1}{λ}+\frac{1}{μ}$=
(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{9}$D.$\frac{9}{2}$

分析 根据向量的三角形法则和向量的数乘运算求出λ=$\frac{1}{3}$,μ=$\frac{2}{3}$,再代值计算即可.

解答 解:∵$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{AC}$=$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{AB}$=$\overrightarrow{OA}$+$\frac{2}{3}$($\overrightarrow{OB}$-$\overrightarrow{OA}$)=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$,
∴λ=$\frac{1}{3}$,μ=$\frac{2}{3}$,
∴$\frac{1}{λ}$+$\frac{1}{μ}$=3+$\frac{3}{2}$=$\frac{9}{2}$,
故选:D

点评 本题考查了向量的三角形法则和向量的数乘运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在等腰三角形ABC中,∠A=150°,AC=AB=1,则$\overrightarrow{AB}•\overrightarrow{BC}$=(  )
A.$-\frac{{\sqrt{3}}}{2}-1$B.$-\frac{{\sqrt{3}}}{2}+1$C.$\frac{{\sqrt{3}}}{2}-1$D.$\frac{{\sqrt{3}}}{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=PB,E,F分别是PA,PB的中点.
(1)在图中画出过点E,F的平面α,使得α∥平面PCD(须说明画法,并给予证明);
(2)若过点E,F的平面α∥平面PCD且截四棱锥P-ABCD所得截面的面积为$\frac{3\sqrt{2}}{2}$,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若数列{an}满足${a_1}=\frac{1}{{{2^{19}}}}$,${a_{n+1}}={2^{20}}a_n^2$,则a1a2…an的最小值为2-69

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC的三个内角A、B、C所对的边分别为a、b、c,1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$.
(1)求A的大小;
(2)若△ABC为锐角三角形,求函数y=2sin2B-2cosBcosC的取值范围;
(3)现在给出下列三个条件:①a=1;②2c-($\sqrt{3}$+1)b=0;③B=45°,试从中再选择两个条件,以确定△ABC,求出所确定的△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设复数z=a+bi(a,b∈R,a>0,i是虚数单位),且复数z满足|z|=$\sqrt{10}$,复数(1+2i)z在复平面上对应的点在第一、三象限的角平分线上.
(1)求复数z;
(2)若$\overline{z}$+$\frac{m-i}{1+i}$为纯虚数(其中m∈R),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设[x]表示不小于实数x的最小整数,如[2.6]=3,[-3.5]=-3.已知函数f(x)=[x]2-2[x],若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,则k的取值范围是(  )
A.$[{-\frac{5}{2},-1})∪[2,5)$B.$[{-1,-\frac{2}{3}})∪[5,10)$C.$({-\frac{4}{3},-1}]∪[5,10)$D.$[{-\frac{4}{3},-1}]∪[5,10)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(x+1)lnx-ax+a(a为常数,且为正实数).
(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;
(2)若不等式(x-1)f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,平行四边形ABCD的两条对角线相交于点O,点E、F分别在边AB、AD上,$\overrightarrow{AE}$=$\frac{5}{7}$$\overrightarrow{AB}$,$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AD}$,直线EF交于AC于点K,$\overrightarrow{AK}$=λ$\overrightarrow{AO}$,则λ等于(  )
A.$\frac{8}{27}$B.$\frac{1}{3}$C.$\frac{10}{27}$D.$\frac{11}{27}$

查看答案和解析>>

同步练习册答案