精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=(x+1)lnx-ax+a(a为常数,且为正实数).
(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;
(2)若不等式(x-1)f(x)≥0恒成立,求a的取值范围.

分析 (1)求出函数f(x)的导数,问题转化为a≤lnx+$\frac{1}{x}$+1在(0,+∞)恒成立,(a>0),令g(x)=lnx+$\frac{1}{x}$+1,(x>0),根据函数的单调性求出a的范围即可;
(2)当0<a≤2时,由(1)知不等式(x-1)f(x)≥0恒成立.
若a>2,f′(x)=$\frac{xlnx+(1-a)x+1}{x}$,
设p(x)=xlnx+(1-a)x+1,利用p′(x)=lnx+2-a可得到p(x)单调性,从而得到f(x)单调性,即可求出符合条件的a.

解答 解:(1)解:(1)f(x)=(x+l)lnx-ax+a,f′(x)=lnx+$\frac{1}{x}$+1-a,
若f(x)在(0,+∞)上单调递增,则a≤lnx+$\frac{1}{x}$+1在(0,+∞)恒成立,(a>0),
令g(x)=lnx+$\frac{1}{x}$+1,(x>0),g′(x)=$\frac{x-1}{{x}^{2}}$,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,
故g(x)在(0,1)递减,在(1,+∞)递增,
故g(x)min=g(1)=2,故0<a≤2;
(2)当0<a≤2时,由(1)知f(x)在(0,+∞)上单调递增,而f(1)=0,
当0<x<1时,f(x)<0,当x>1时,f(x)>0,
故不等式(x-1)f(x)≥0恒成立.
若a>2,f′(x)=$\frac{xlnx+(1-a)x+1}{x}$,
设p(x)=xlnx+(1-a)x+1,p′(x)=lnx+2-a=0,则x=ea-2
当x∈(1,ea-2)时,p(x)单调递减,则p(x)<p(1)=2-a<0,
即f′(x)=$\frac{p(x)}{x}$<0,∴当x∈(1,ea-2)时,f(x)单调递减,f(x)<f(1)=0.
此时(x-1)f(x)<0,不符合题意.
∴a的取值范围为(0,2].

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、转化思想,考查函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.定义“函数y=f(x)是D上的a级类周期函数”如下:函数y=f(x),x∈D,对于给定的非零常数 a,总存在非零常数T,使得定义域D内的任意实数x都有af(x)=f(x+T)恒成立,此时T为f(x)的周期.若y=f(x)是[1,+∞)上的a级类周期函数,且T=1,当x∈[1,2)时,f(x)=2x+1,且y=f(x)是[1,+∞)上的单调递增函数,则实数a的取值范围为(  )
A.$[{\frac{5}{6},+∞})$B.[2,+∞)C.$[{\frac{5}{3},+∞})$D.[10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,已知△OAB,若点C满足$\overrightarrow{AC}=2\overrightarrow{CB},\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}(λ,μ∈R)$,则$\frac{1}{λ}+\frac{1}{μ}$=
(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{9}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|2x-5>0},B={x|x2-4x+3≤0},则A∩B=(  )
A.(1,$\frac{5}{2}$)B.[1,$\frac{5}{2}$)C.($\frac{5}{2}$,3)D.($\frac{5}{2}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若等比数列{an},前n项和Sn,且a2a3=2a1,$\frac{5}{4}$为a4与2a7的等差中项,则S4=(  )
A.29B.30C.31D.33

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若点A(4,3),B(2,-1)在直线x+2y-a=0的两侧,则a的取值范围是(  )
A.(0,10)B.(-1,2)C.(0,1)D.(1,10)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的
仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于(  )
A.100$\sqrt{2}$米B.50($\sqrt{3}$+1)米C.$100({\sqrt{3}+1})$米D.200米

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某班有6名班干部,其中男生4人,女生2人,任选3人参加学校组织的义务植树活动.
(I) 求男生甲、女生乙至少有1人被选中的概率;
(II) 设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P (A)和P (B|A).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$f(x)={({\frac{1}{2}})^{|x|}}-{x^2}$+2的图象可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案