精英家教网 > 高中数学 > 题目详情
1.函数$f(x)={({\frac{1}{2}})^{|x|}}-{x^2}$+2的图象可能是(  )
A.B.C.D.

分析 利用奇偶性判断对称性,再计算f(0)的值,判断f(x)在(0,+∞)上的单调性即可得出答案.

解答 解:由解析式可知$f(x)={({\frac{1}{2}})^{|x|}}-{x^2}+2$为偶函数,
∴f(x)的图象关于y轴对称,排除A;
又f(0)=3>0,排除C;
当x>0时,y=($\frac{1}{2}$)x单调递减,y=-x2单调递减,
∴f(x)=($\frac{1}{2}$)x-x2+2在(0,+∞)上是单调递减的,排除B;
故选D.

点评 本题考查了函数的图象判断,一般从奇偶性,单调性和特殊值等方面考虑,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(x+1)lnx-ax+a(a为常数,且为正实数).
(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;
(2)若不等式(x-1)f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,平行四边形ABCD的两条对角线相交于点O,点E、F分别在边AB、AD上,$\overrightarrow{AE}$=$\frac{5}{7}$$\overrightarrow{AB}$,$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AD}$,直线EF交于AC于点K,$\overrightarrow{AK}$=λ$\overrightarrow{AO}$,则λ等于(  )
A.$\frac{8}{27}$B.$\frac{1}{3}$C.$\frac{10}{27}$D.$\frac{11}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.以模型y=cekx(e为自然对数的底)去拟合一组数据时,为了求出回归直线方程,设z=lny,其变换后得到线性回归方程为z=0.4x+2,则c=e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“a≥3${∫}_{0}^{\frac{π}{6}}$cosθdθ”是“直线l:2ax-y+2a2=0(a>0)与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1的右支无交点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1+acost\\ y=asint\end{array}$(t为参数,a>0),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ.
(1)求曲线C1的普通方程,并将C1的方程化为极坐标方程;
(2)直线C3的极坐标方程为θ=$\frac{π}{4}$,若曲线C1与C2的公共点都在C3上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z满足(3-4i)z=1+2i(i为虚数单位),则z的共轭复数是(  )
A.-$\frac{1}{5}-\frac{2}{5}$iB.$-\frac{1}{5}+\frac{2}{5}i$C.$\frac{1}{5}+\frac{2}{5}$iD.$\frac{1}{5}-\frac{2}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法错误的是(  )
A.若命题p∧q为假命题,则p,q都是假命题
B.已知命题p:?x∈R,x2+x+1>0,则¬p:?x0∈R,x02+x0+1≤0
C.命题“若x2-3x+2=0,则x=1”的逆命题为:“若x≠1,则x2-3x+2≠0”
D.“x=1”是“x2-3x+2=0”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sin2x+cos(2x-$\frac{π}{3}$)-1
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

同步练习册答案