精英家教网 > 高中数学 > 题目详情
7.设集合A={x|x≤0或x≥2},B={x|x<1},则集合A∩B=(  )
A.(-∞,0)B.(-∞,0]C.[2,+∞)D.(2,+∞)

分析 根据交集的定义写出集合A∩B.

解答 解:集合A={x|x≤0或x≥2},B={x|x<1},
则集合A∩B={x|x≤0}=(-∞,0].
故选:B.

点评 本题考查了交集的运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.等差数列{an}的前n项和为Sn,已知a2=7,a3为整数,且Sn的最大值为S5
(1)求{an}的通项公式;
(2)设bn=$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x1,x2,…,x10为1,2,…,10的一个排列,则满足对任意正整数m,n,且1≤m<n≤10,都有xm+m≤xn+n成立的不同排列的个数为(  )
A.512B.256C.255D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图中网格纸的小正方形的边长是1,复平面内点Z所表示的复数z满足(z1-i)•z=1,则复数z1=(  )
A.-$\frac{2}{5}+\frac{4}{5}$iB.$\frac{2}{5}+\frac{4}{5}$iC.$\frac{2}{5}-\frac{4}{5}$iD.-$\frac{2}{5}-\frac{4}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线x+y-a=0与圆x2+y2=2交于A、B两点,O点坐标原点,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$满足条件$|{2\overrightarrow{OA}-3\overrightarrow{OB}}|=|{2\overrightarrow{OA}+3\overrightarrow{OB}}|$,则实数a的值为(  )
A.$\sqrt{2}$B.$-\sqrt{2}$C.±1D.$±\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等腰三角形ABC中,∠A=150°,AC=AB=1,则$\overrightarrow{AB}•\overrightarrow{BC}$=(  )
A.$-\frac{{\sqrt{3}}}{2}-1$B.$-\frac{{\sqrt{3}}}{2}+1$C.$\frac{{\sqrt{3}}}{2}-1$D.$\frac{{\sqrt{3}}}{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x,y满足约束条件$\left\{{\begin{array}{l}{x-y+1≤0}\\{x+y-9≤0}\\{x≥1}\end{array}}\right.$,则z=5x+3y的最大值为35.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的三个内角A,B,C的对边分别为a,b,c,若b=c-2bcosA.
(1)求证:A=2B;
(2)若5b=3c,$a=4\sqrt{6}$,求BC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC的三个内角A、B、C所对的边分别为a、b、c,1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$.
(1)求A的大小;
(2)若△ABC为锐角三角形,求函数y=2sin2B-2cosBcosC的取值范围;
(3)现在给出下列三个条件:①a=1;②2c-($\sqrt{3}$+1)b=0;③B=45°,试从中再选择两个条件,以确定△ABC,求出所确定的△ABC的面积.

查看答案和解析>>

同步练习册答案