精英家教网 > 高中数学 > 题目详情
14.已知f(x)=|x-1|+|x+a|,g(a)=|a+3|.
(1)当a=3时,解关于x的不等式f(x)>g(a);
(2)函数h(x)=f(x)-g(a)存在零点,求实数a的取值范围.

分析 (1)当a=3时,不等式|x-1|+|x+3|>6等价变形,可得结论;
(2)利用|x-1|+|x+a|≥|a+1|,即可求实数a的取值范围.

解答 解:(1)当a=3时,不等式f(x)>g(a),即|x-1|+|x+3|>6可化为
$\left\{\begin{array}{l}{x≤-3}\\{1-x-x-3>6}\end{array}\right.$或$\left\{\begin{array}{l}{-3<x<1}\\{1-x+x+3>6}\end{array}\right.$或$\left\{\begin{array}{l}{x>1}\\{x-1+x+3>6}\end{array}\right.$,…(3分)
解得x<-4或x>2,
∴不等式f(x)>g(a)的解集为{x|x<-4或x>2}.…(5分)
(2)若函数h(x)=f(x)-g(a)存在零点,则
∵|x-1|+|x+a|≥|a+1|,
∴|3+a|≥|a+1|,解得a≥-2.

点评 本题考查绝对值不等式,考查学生的计算能力,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.等差数列{an}中,若已知a2=14,a5=5.
(Ⅰ)求数列{an}的通项公式an;     
(Ⅱ)求前10项和S10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过点O(0,0)作直线与圆(x-4$\sqrt{5}$)2+(y-8)2=169相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为(  )
A.$\frac{9}{10}$B.$\frac{15}{32}$C.$\frac{9}{32}$D.$\frac{7}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线x+y-a=0与圆x2+y2=2交于A、B两点,O点坐标原点,向量$\overrightarrow{OA}$,$\overrightarrow{OB}$满足条件$|{2\overrightarrow{OA}-3\overrightarrow{OB}}|=|{2\overrightarrow{OA}+3\overrightarrow{OB}}|$,则实数a的值为(  )
A.$\sqrt{2}$B.$-\sqrt{2}$C.±1D.$±\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-aex,a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线的方程;
(Ⅱ)若曲线y=f(x)与x轴有且只有一个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x,y满足约束条件$\left\{{\begin{array}{l}{x-y+1≤0}\\{x+y-9≤0}\\{x≥1}\end{array}}\right.$,则z=5x+3y的最大值为35.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.有4个不同的球,4个不同的盒子,把球全部放入盒内:
(1)恰有1个盒内有2个球,共有几种放法?
(2)恰有2个盒不放球,共有几种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设P为△ABC所在平面上一点,且满足$3\overrightarrow{PA}+4\overrightarrow{PC}=m\overrightarrow{AB}$(m>0).若△ABP的面积为8,则△ABC的面积为14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知关于x,y的二元一次方程组的增广矩阵为$(\begin{array}{l}{2}&{1}&{5}\\{1}&{-2}&{0}\end{array})$,则3x-y=5.

查看答案和解析>>

同步练习册答案