精英家教网 > 高中数学 > 题目详情
4.已知关于x,y的二元一次方程组的增广矩阵为$(\begin{array}{l}{2}&{1}&{5}\\{1}&{-2}&{0}\end{array})$,则3x-y=5.

分析 根据增广矩阵求得二元一次方程组,两式相加即可求得3x-y=5.

解答 解:由二元一次方程组的增广矩阵为$(\begin{array}{l}{2}&{1}&{5}\\{1}&{-2}&{0}\end{array})$,
则二元一次方程组为:$\left\{\begin{array}{l}{2x+y=5}\\{x-2y=0}\end{array}\right.$,两式相加得:3x-y=5,
∴3x-y=5,
故答案为:5.

点评 本题考查增广矩阵的性质,考查增广矩阵与二元一次方程组转化,考查转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知f(x)=|x-1|+|x+a|,g(a)=|a+3|.
(1)当a=3时,解关于x的不等式f(x)>g(a);
(2)函数h(x)=f(x)-g(a)存在零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在锐角△ABC中,角A,B,C所对的边分别是a,b,c,已知$\overrightarrow m=({\sqrt{3}a,c}),\overrightarrow n=({sinA,cosC}),\overrightarrow m=3\overrightarrow n$.
(1)求C;
(2)求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在平行四边形ABCD中,M、N分别为AB、AD上的点,且$\overrightarrow{AM}$=$\frac{4}{5}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{2}{3}$$\overrightarrow{AD}$,连接AC、MN交于P点,若$\overrightarrow{AP}$=λ$\overrightarrow{AC}$,则λ的值为(  )
A.$\frac{3}{5}$B.$\frac{3}{7}$C.$\frac{4}{11}$D.$\frac{4}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z在复平面内对应的点为(3,4),复数z的共轭复数为$\overline{z}$,那么z•$\overline{z}$等于(  )
A.5B.-7C.12D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{bn}满足bn=|$\frac{{a}_{n}+2}{{a}_{n}-1}$|,其中a1=2,an+1=$\frac{2}{{a}_{n}+1}$
(1)求b1,b2,b3,并猜想bn的表达式(不必写出证明过程);
(2)设cn=$\frac{1}{lo{g}_{2}{b}_{n}•lo{g}_{2}{b}_{n+1}}$,数列|cn|的前项和为Sn,求证Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.射洪县教育局从去年参加了计算机职称考试,并且年龄在[25,55]岁的教师中随机抽取n人的成绩进行了调查,得到如下统计表和各年龄段人数频率分布直方图:
组数分组低碳族的人数占本组的频率
第一组[25,30)1200.6
第二组[30,35)195p
第三组[35,40)1000.5
第四组[40,45)a0.4
第五组[45,50)30q
第六组[50,55)150.3
(1)补全频率分布直方图,并求a、p、q的值;
(2)若用以上数据来估计今年参考老师的过关情况,并将每组的频率视作对应年龄阶段老师的过关概率,考试是否过关互不影响.现有三名教师参加该次考试,年龄分别为41岁、47岁、53岁.记ξ为过关的人数,请利用相关数据求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB交AB于点D(不为原点).
(Ⅰ)求点D的轨迹方程;
(Ⅱ)若点D坐标为(2,1),求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义在区间[-3,3]上的单调函数f(x)满足:对任意的x∈[-3,3],都有f(f(x)-2x)=6,则在[-3,3]上随机取一个实数x,使得f(x)的值不小于4的概率为(  )
A.$\frac{1}{6}$B.$\frac{5}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案