精英家教网 > 高中数学 > 题目详情
如图,四边形为边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的圆O交于F,连接CF并延长交AB于点 E.
(1)求证:E为AB的中点; 
(2)求线段FB的长.
考点:与圆有关的比例线段,弦切角
专题:选作题,立体几何
分析:(1)根据∠CDO=∠FDO,BC是的切线,且CF是圆D的弦,得到∠BCE=
1
2
∠CDF
,即∠CDO=∠BCE,得到两个三角形全等,得到线段相等,得到结论.
(2)根据两个角对应相等,得到两个三角形相似,得到对应边成比例,根据所给的长度,代入比例式,得到要求的线段.
解答: (1)证明:连接DF,DO,则∠CDO=∠FDO,
因为BC是的切线,且CF是圆D的弦,
所以∠BCE=
1
2
∠CDF
,即∠CDO=∠BCE,
故Rt△CDO≌Rt△BCE,
所以EB=OC=
1
2
AB.…(5分)
所以E是AB的中点.
(2)解:连接BF,
∵∠BEF=∠CEB,∠ABC=∠EFB
∴△FEB∽△BEC,
BF
BE
=
CB
CE

∵ABCD是边长为a的正方形,
∴BF=
5
5
a.
点评:本题考查相似三角形的判定和性质,考查圆周角定理,本题解题的关键是得到三角形全等和三角形相似,本题是一个中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.
(Ⅰ)求a的值及函数f(x)的极值;
(Ⅱ)证明:当x>0时,ex>x2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
2
x2-1+cosx(a>0).
(1)当a=1时,求函数f(x)在[-
π
2
π
2
]上的最大值和最小值;
(2)若f(x)在(0,+∞)上为增函数,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差数列,a2,b2,a3+2成等比数列
(1)求数列{an}、{bn}的通项公式
(2)求(b1-a1)+(b2+a2)+(b3-a3)+…+[bn+(-1)nan].

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-bx2
(I)当b=3时,函数在(t,t+3)上既存在极大值,又有在极小值,求t的取值范围.
(II)若g(x)=
f(x)
x
+1
对于任意的x∈[2,+∞)恒有g(x)≥0成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:x2+y2-2x-4y-13=0,C2:x2+y2-2ax-6y+a2+1=0(其中a>0)相外切,且直线l:(m+1)x+y-7x-7=0与C2相切.求:
(1)圆C2的标准方程;
(2)求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx2+cx的导函数y=f′(x)的简图,它与x轴的交点是(0,0)和(1,0),又f′(
1
2
)=
3
2

(1)求f(x)的解析式及f(x)的极大值.
(2)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(x-c)2(x∈R,c是实常数)在x=2处取极大值.
(1)求c的值;
(2)在曲线y=f(x)上是否存在点M,使经过点M的切线与曲线y=f(x)有且仅有一个公共点?若存在,求点M的坐标;若不存在,简要说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求证:a2+b2+c2≥ab+bc+ac;
(2)求证:a+
1
a-1
≥3(a>1)
(3)已知x>0,y>0,且x+2y=1,求
1
x
+
1
y
的最小值.

查看答案和解析>>

同步练习册答案