精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-bx2
(I)当b=3时,函数在(t,t+3)上既存在极大值,又有在极小值,求t的取值范围.
(II)若g(x)=
f(x)
x
+1
对于任意的x∈[2,+∞)恒有g(x)≥0成立,求b的取值范围.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的极值
专题:综合题,导数的综合应用
分析:(I)根据条件写出函数和导函数,得f(x)在x=0时取得极大值,在x=2时取得极小值,函数f(x)在(t,t+3)上既能取到极大值,又能取到极小值,写出关于t的不等式,解出结果.
(II)写出要用的函数式,根据条件中的恒成立问题,得到x2-bx+1≥0对任意的x∈[2,+∞)恒成立,看出函数的单调性,根据最值之间的关系写出结果.
解答: 解:(I)b=3时,f(x)=x3-3x2,f'(x)=3x2-6x.
由f'(x)=0得x1=0,x2=2…(1分)
当-∞<x<0或x>2时f'(x)>0;0<x<2时f'(x)<0
故得f(x)在x=0时取得极大值,在x=2时取得极小值,函数在(t,t+3)上既能取到最大值又能取得最小值只须t<0且t+3>2,即-1<t<0.
∴t取值范围为(-1,0);
(II)
f(x)
x
+1≥0
对于任意的x∈[2,+∞)上恒成立
即x2-bx+1≥0对任意的x∈[2,+∞)上恒成立,
可得b≤x+
1
x
在x∈[2,+∞)上恒成立                 …(7分)
g(x)=x+
1
x
g′(x)=1-
1
x2
=
x2-1
x2

∴x∈[2,+∞),g'(x)>0,
∴g(x)在[2,+∞)上为增函数,
∴x=2时,g(x)有最小值g(2)=
5
2

∴b取值值围为(-∞,
5
2
]
…(12分)
点评:本题看出函数的极值的应用和函数的恒成立问题,解题的关键是对于恒成立问题的理解,用函数的最值思想解决恒成立问题是常见的一种形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集I=A∪B中有x个元素,(∁IA)∪(∁IB)中有y个元素,若A∩B非空,则A∩B的元素个数为(  )
A、yB、xC、x-yD、x+y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-9x2+12x-3
(1)求函数f(x)的极值;
(2)若关于x的方程f(x)-a=0有3个实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆、抛物线、双曲线的离心率构成一个等比数列且它们有一个公共的焦点(4,0),其中双曲线的一条渐近线方程为y=
3
x,求三条曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x∈(0,4),y∈(0,4).
(1)若x∈N+,y∈N+以x,y作为矩形的边长,记矩形的面积为S,求S<4的概率;
(2)若x∈R,y∈R,求这两数之差不大于2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形为边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的圆O交于F,连接CF并延长交AB于点 E.
(1)求证:E为AB的中点; 
(2)求线段FB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x(e为自然对数的底数)
(Ⅰ)求f(x)的最小值;
(Ⅱ)若对于任意的x∈[0,2],不等式f(x)>ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax2+2x+3
(1)求在区间[0,2]上的最大值g(a)
(2)求g(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin2x+sin2x
(1)若x∈[0,
π
2
],求使f(x)为正值的x的集合;
(2)若关于x的方程[f(x)]2+f(x)+a=0在[0,
π
4
]内有实根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案