分析 先设M(x,y),A(a,0),B(0,b),根据$\overrightarrow{AM}=\frac{2}{3}\overrightarrow{MB}$得x,y的方程,最后根据a2+b2=25得出x,y的关系即M的轨迹方程.
解答 解:设M(x,y),A(a,0),B(0,b),
由$\overrightarrow{AM}=\frac{2}{3}\overrightarrow{MB}$得(x-a,y)=$\frac{2}{3}$(-x,b-y),
∴$\left\{\begin{array}{l}{x-a=-\frac{2}{3}x}\\{y=\frac{2}{3}(b-y)}\end{array}\right.$,解得x=$\frac{3}{5}a$,y=$\frac{2}{5}$b
∵|AB|=5
∴a2+b2=25
∴$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1.
故答案为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1.
点评 本题主要考查了椭圆的标准方程.本题主要灵活利用了向量的关系进行解题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com