精英家教网 > 高中数学 > 题目详情
8.高为4,底面边长为2的正四棱锥的内切球的体积为$\frac{(\sqrt{17}-1)^{3}}{48}π$.

分析 由等体积可得内切球半径r,即可求出高为4,底面边长为2的正四棱锥的内切球的体积.

解答 解:正四棱锥的斜高为$\sqrt{17}$,正四棱锥内切球的半径为r
由等体积可得$\frac{1}{3}×{2}^{2}×4=\frac{1}{3}(4+4×\frac{1}{2}×2×\sqrt{17})$r,
∴r=$\frac{\sqrt{17}-1}{4}$,
∴高为4,底面边长为2的正四棱锥的内切球的体积为$\frac{4}{3}•π•$($\frac{\sqrt{17}-1}{4}$)3=$\frac{(\sqrt{17}-1)^{3}}{48}π$.
故答案为:$\frac{(\sqrt{17}-1)^{3}}{48}π$.

点评 本题主要考查内切球半径r,考查计算能力和空间想象能力,等体积方法求出球的半径是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若集合M={x∈N|1<x<7},N={x|$\frac{x}{3}$∉N},则M∩N等于(  )
A.{3,6}B.{4,5}C.{2,4,5}D.{2,4,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某人在静水中游泳的速度为$4\sqrt{3}$千米/时,他现在水流速度为4千米/时的河中游泳.
(Ⅰ)如果他垂直游向河对岸,那么他实际沿什么方向前进?实际前进的速度为多少?
(Ⅱ)他必须朝哪个方向游,才能沿与水流垂直的方向前进?实际前进的速度为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数$f(x)={({\frac{1}{2}})^{1+{x^2}}}+\frac{1}{1+|x|}$,则使得f(2x-1)+f(1-2x)<2f(x)成立的x的取值范围是(  )
A.$({\frac{1}{3},1})$B.$({-∞,\frac{1}{3}})∪({1,+∞})$C.$({-\frac{1}{3},\frac{1}{3}})$D.$({-∞,-\frac{1}{3}})∪({\frac{1}{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.点P是椭圆$\frac{{y}^{2}}{5}$+$\frac{{x}^{2}}{4}$=1上的一点,F1和F2是焦点,且∠F1PF2=30°,则△F1PF2的面积是8-4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x||x-1|<2},B={x|x2-2mx+m2-1<0}.
(1)当m=3时,求A∩B;   
(2)若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.长度为5的线段AB的两端点A,B分别在x轴、y轴上滑动,点M在线段AB上,且AM=2,则点M的轨迹方程是$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知角α终边上一点P(m,5)(m≠0),且 $cosα=\frac{m}{13}$.求sinα+cosα+tanα的值;
(2)已知β∈(0,$\frac{π}{4}$)且$sinβcosβ=\frac{3}{10}$,求( I)tanβ的值;
(II)sin2α+2cos2α+4sinαcosαsin2β+2cos2β+4sinβcosβ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义有限数集A中的最大元素与最小元素之差为A的“长度”,如:集合A1={1,2,4}的“长度”为3,集合A2={3}的“长度”为0.已知集合U={1,2,3,4,5,6},则U的所有非空子集的“长度”之和为201.

查看答案和解析>>

同步练习册答案