分析 根据向量减法的几何意义及$\overrightarrow{EB}=3\overrightarrow{CE}$便可得出$\overrightarrow{AB}-\overrightarrow{AE}=3(\overrightarrow{AE}-\overrightarrow{AC})$,从而进行向量的数乘运算便可解出向量$\overrightarrow{AE}$,即用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{AE}$.
解答 解:由$\overrightarrow{EB}=3\overrightarrow{CE}$得:$\overrightarrow{AB}-\overrightarrow{AE}=3(\overrightarrow{AE}-\overrightarrow{AC})$;
∴$4\overrightarrow{AE}=\overrightarrow{AB}+3\overrightarrow{AC}$;
∴$\overrightarrow{AE}=\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$.
故答案为:$\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$.
点评 考查向量减法的几何意义,以及向量的数乘运算.
科目:高中数学 来源: 题型:选择题
| A. | S2>S3>S1 | B. | S1>S3>S2 | C. | S2>S1>S3 | D. | S1>S2>S3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.95 | B. | 0.81 | C. | 0.74 | D. | 0.36 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g(x)的最大值为2 | B. | g(x)在[0,$\frac{π}{2}$]上是增函数 | ||
| C. | 函数g(x)的图象关于直线x=$\frac{π}{3}$对称 | D. | 函数g(x)的图象关于点($\frac{π}{12}$,0)对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com