| A. | (x-2)2+(y+3)2=36 | B. | (x-2)2+(y+3)2=25 | C. | (x-2)2+(y+3)2=18 | D. | (x-2)2+(y+3)2=9 |
分析 由条件令参数λ的系数等于零,求得x和y的值,即可得到定点P的坐标,由此可以求得过点P的圆的半径,易得该圆的标准方程.
解答 解:由(3+2λ)x+(3λ-2)y+5-λ=0得到:(2x+3y-1)λ+(3x-2y+5)=0.
则$\left\{\begin{array}{l}{2x+3y-1=0}\\{3x-2y+5=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$,
即P(-1,1).
因为圆C(x-2)2+(y+3)2=16的圆心坐标是(2,-3),
所以PC=$\sqrt{(-1-2)^{2}+(1+3)^{2}}$=5,
所以与圆C:(x-2)2+(y+3)2=16有公共的圆心且过点P的圆的标准方程为:(x-2)2+(y+3)2=25.
故选:B.
点评 本题考查了圆的标准方程,直线与圆的位置关系,根据题意求得顶点P的坐标是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ①③ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4+2$\sqrt{3}$ | C. | 4+2$\sqrt{2}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | -3 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com