精英家教网 > 高中数学 > 题目详情
5.已知直线(3+2λ)x+(3λ-2)y+5-λ=0恒过定点P,则与圆C:(x-2)2+(y+3)2=16有公共的圆心且过点P的圆的标准方程为(  )
A.(x-2)2+(y+3)2=36B.(x-2)2+(y+3)2=25C.(x-2)2+(y+3)2=18D.(x-2)2+(y+3)2=9

分析 由条件令参数λ的系数等于零,求得x和y的值,即可得到定点P的坐标,由此可以求得过点P的圆的半径,易得该圆的标准方程.

解答 解:由(3+2λ)x+(3λ-2)y+5-λ=0得到:(2x+3y-1)λ+(3x-2y+5)=0.
则$\left\{\begin{array}{l}{2x+3y-1=0}\\{3x-2y+5=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$,
即P(-1,1).
因为圆C(x-2)2+(y+3)2=16的圆心坐标是(2,-3),
所以PC=$\sqrt{(-1-2)^{2}+(1+3)^{2}}$=5,
所以与圆C:(x-2)2+(y+3)2=16有公共的圆心且过点P的圆的标准方程为:(x-2)2+(y+3)2=25.
故选:B.

点评 本题考查了圆的标准方程,直线与圆的位置关系,根据题意求得顶点P的坐标是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.定义[x]为不超过x的最大整数,如[3.2]=3.设x=[x]+{x},则下列论断正确的有(  )
①[-2.6]=-2;②[n+x]=n+[x]其中n∈Z;③x-{x}=x+1-{x+1};④0≤{x}<1.
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.光线从点M (3,-2)照射到y轴上一点P(0,1)后,被y轴反射,求反射光线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.
(Ⅰ)证明:A1C⊥平面BED;
(Ⅱ)连结A1B,求二面角A1-DB-E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在三棱锥A-BCD中,E,F,G分别是AB,AC,BD的中点,若AD与BC所成的角是60°,那么∠FEG为60°或120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过圆$x_{\;}^2+y_{\;}^2=4$内一点A(1,1)所作的弦中,最短的弦长与最长的弦长之和为(  )
A.5B.4+2$\sqrt{3}$C.4+2$\sqrt{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.(文)已知函数f(x)是奇函数,当x>0时,$f(x)={3^{\frac{x}{2}}}$,则$f({{{log}_2}\frac{1}{4}})$等于(  )
A.-4B.-3C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)在△ABC中,已知∠C=45°,∠A=60°,b=2,求此三角形最小边的长及a与∠B的值.
(2)在△ABC中,已知∠A=30°,∠B=120°,b=5,求∠C及a、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=(x-a)2+(ln2x-2a)2,其中x>0,a∈R,存在x0使得f(x0)≤$\frac{1}{5}$成立,则实数a的值为(  )
A.$\frac{1}{10}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.1

查看答案和解析>>

同步练习册答案