分析 (Ⅰ)连结AC交BD于点F,推导出BD⊥AC,BD⊥A1C,连结EF交A1C于点G,推导出Rt△A1AC∽Rt△FCE,由此能证明A1C⊥平面BED.
(Ⅱ)连结A1B,连结A1F,得到∠A1FE是二面角A1-DB-E的平面角,由此能求出二面角A1-DB-E的正弦值.
解答 证明:(Ⅰ)依题设,AB=2,CE=1.
连结AC交BD于点F,则BD⊥AC.
由三垂线定理知,BD⊥A1C.(3分)
在平面A1CA内,连结EF交A1C于点G,
∵$\frac{{A{A_1}}}{FC}=\frac{AC}{CE}=2\sqrt{2}$,
∴Rt△A1AC∽Rt△FCE,∠AA1C=∠CFE,∠CFE与∠FCA1互余.
于是A1C⊥EF.A1C与平面BED内两条相交直线BD,EF都垂直,
∴A1C⊥平面BED.(6分)
解:(Ⅱ)连结A1B,连结A1F,
∵A1B=A1D,DF=FB,∴A1F⊥BD,
又∵DC=BC,∴EF⊥BD,
∴∠A1FE是二面角A1-DB-E的平面角.(8分)
$EF=\sqrt{C{F^2}+C{E^2}}=\sqrt{3}$,$CG=\frac{CE×CF}{EF}=\frac{{\sqrt{2}}}{{\sqrt{3}}}$,
又${A_1}C=\sqrt{AA_1^2+A{C^2}}=2\sqrt{6}$,${A_1}G={A_1}C-CG=\frac{{5\sqrt{6}}}{3}$.
${A_1}F=\sqrt{{A_1}{A^2}+A{F^2}}=\sqrt{16+2}=3\sqrt{2}$.
∴$sin∠{A_1}FG=\frac{{{A_1}G}}{{{A_1}F}}=\frac{{\frac{{5\sqrt{6}}}{3}}}{{3\sqrt{2}}}=\frac{{5\sqrt{3}}}{9}$,
∴二面角A1-DB-E的正弦值为$\frac{5\sqrt{3}}{9}$.(12分)
点评 本题考查线面垂直的证明,考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
| A. | x=±$\frac{{\sqrt{5}}}{5}$ | B. | x=±$\frac{{2\sqrt{5}}}{5}$ | C. | y=±$\frac{{\sqrt{5}}}{5}$ | D. | y=±$\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-2)2+(y+3)2=36 | B. | (x-2)2+(y+3)2=25 | C. | (x-2)2+(y+3)2=18 | D. | (x-2)2+(y+3)2=9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com