精英家教网 > 高中数学 > 题目详情
3.求两点 P(1,1,1)与 Q(4,3,1)之间的距离$\sqrt{13}$.

分析 直接利用空间距离公式求解即可.

解答 解:两点 P(1,1,1)与 Q(4,3,1)之间的距离:$\sqrt{(4-1)^{2}+(3-1)^{2}+(1-1)^{2}}$=$\sqrt{13}$.
故答案为:$\sqrt{13}$.

点评 本题考查空间两点间距离公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设等比数列{an}的前n项和为Sn,若S6:S3=3:1,则S3:S9=1:7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在长方体ABCD-A1B1C1D1中,AD=DD1=1,DC=2,E为AB上一点.
(Ⅰ)求证:D1E⊥A1D;
(Ⅱ)若E为AB中点时,求AD与平面D1EC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=sin(2x+φ),若${∫}_{0}^{\frac{2π}{3}}$f(x)dx=0,则函数f(x)图象的一条对称轴直线是(  )
A.$x=\frac{π}{3}$B.$x=\frac{2π}{3}$C.$x=\frac{5π}{12}$D.$x=\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\sqrt{\frac{2-x}{x-3}}$的定义域为[2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥E-ABCD中,底面ABCD为正方形,AE⊥平面CDE,已知AE=DE=1,F为线段DE中点.
(1)求证:CD⊥平面ADE;
(2)求V三棱锥E-BCF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义[x]为不超过x的最大整数,如[3.2]=3.设x=[x]+{x},则下列论断正确的有(  )
①[-2.6]=-2;②[n+x]=n+[x]其中n∈Z;③x-{x}=x+1-{x+1};④0≤{x}<1.
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.数列{an}的前n项和${S_n}=2{a_n}-3({n∈{N^*}})$,则a6=96.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.
(Ⅰ)证明:A1C⊥平面BED;
(Ⅱ)连结A1B,求二面角A1-DB-E的正弦值.

查看答案和解析>>

同步练习册答案