精英家教网 > 高中数学 > 题目详情
11.已知f(x)=sin(2x+φ),若${∫}_{0}^{\frac{2π}{3}}$f(x)dx=0,则函数f(x)图象的一条对称轴直线是(  )
A.$x=\frac{π}{3}$B.$x=\frac{2π}{3}$C.$x=\frac{5π}{12}$D.$x=\frac{7π}{12}$

分析 利用${∫}_{0}^{\frac{2π}{3}}$ f(x)dx=0,求出φ值,然后找出使三角函数f(x)取得最值的x即可.

解答 解:f(x)=sin(2x+φ),若${∫}_{0}^{\frac{2π}{3}}$f(x)dx=-$\frac{1}{2}$cos(2x+φ)${|}_{0}^{\frac{2π}{3}}$=-$\frac{1}{2}$cos($\frac{4π}{3}$+φ)+$\frac{1}{2}$cosφ=0,
∴tanφ=$\sqrt{3}$,解得φ=$\frac{π}{3}$+kπ,k∈Z.
令2x+φ=nπ+$\frac{π}{2}$,n∈Z,可得x=$\frac{1}{2}$(n-k)π+$\frac{π}{12}$,
则函数f(x)图象的对称轴方程是x=$\frac{1}{2}$(n-k)π+$\frac{π}{12}$,
故选:D.

点评 本题主要考查定积分,正弦函数的图象的对称性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设集合A={x|-2≤x≤2},集合B={x|x2-2x-3>0},则A∪B=(  )
A.(-∞,-1)∪(3,+∞)B.(-1,2]C.(-∞,2]∪(3,+∞)D.[-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.圆台的两底面半径分别是5cm和10cm,高为8cm,有一个过圆台两母线的截面,且上、下底面中心到截面与底面的交线的距离分别为3cm和6cm,求截面面积.圆台的侧面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$|{\overrightarrow a}|=13$,$|{\overrightarrow b}|=19$,$|{\overrightarrow a+\overrightarrow b}|=24$,则$|{\overrightarrow a-\overrightarrow b}|$=(  )
A.22B.48C.$\sqrt{46}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=2lnx+$\frac{m}{x+1}$.
(Ⅰ)若函数f(x)在点(1,f(1))处的切线与直线x-y+3=0平行,判断函数f(x)的单调性;
(Ⅱ)若x≥1时,f(x)≥1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知正项数列{an}为等比数列,且5a2是a4与3a3的等差中项,若a2=2,则该数列的前6项的和为(  )
A.126B.63C.64D.127

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.求两点 P(1,1,1)与 Q(4,3,1)之间的距离$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$y=cos(2x-\frac{π}{3})$的单调递增区间是(  )
A.$[2kπ-\frac{π}{3},2kπ+\frac{π}{6}]$k∈ZB.$[kπ+\frac{π}{6},kπ+\frac{2π}{3}]$k∈Z
C.$[kπ-\frac{π}{3},kπ+\frac{π}{6}]$k∈ZD.$[2kπ+\frac{π}{6},2kπ+\frac{2π}{3}]$k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)=\left\{\begin{array}{l}x+2,x≤a\\{x^2},x>a\end{array}\right.$若存在实数b,使函数g(x)=f(x)-b没有零点,则a的取值范围是(-∞,-2)∪(2,+∞).

查看答案和解析>>

同步练习册答案