精英家教网 > 高中数学 > 题目详情
15.若A为△ABC的内角,则下列函数中一定取正值的是(  )
A.cosAB.sinAC.tanAD.sin2A

分析 三角形内角的范围(0,π),依题意可以推出答案.

解答 解:A为△ABC的内角,则A∈(0,π),显然sinA>0
故选B.

点评 本题考查三角函数值的符号,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=Asin(ωx+ϕ)+B(A>0,ω>0,|ϕ|<\frac{π}{2})$的一系列对应值如表:
x-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$$\frac{4π}{3}$$\frac{11π}{6}$$\frac{7π}{3}$$\frac{17π}{6}$
f(x)-1131-113
(1)根据表格提供的数据求函数的解析式;
(2 )根据(1)的结果若函数y=f(kx)(k>0)的最小正周期为$\frac{2π}{3}$,当$x∈[0,\frac{π}{3}]$时,方程f(kx)=m恰好有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知ξ~B(n,0.3),Dξ=2.1,则n的值为(  )
A.10B.7C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.锐角△ABC中,已知$a=\sqrt{3},A=\frac{π}{3}$,则b2+c2+3bc的取值范围是(  )
A.(5,15]B.(7,15]C.(7,11]D.(11,15]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{AB}=3\overrightarrow e,\overrightarrow{CD}=-5\overrightarrow e(\overrightarrow e≠\overrightarrow 0)$,且$|{\overrightarrow{AD}}|=|{\overrightarrow{BC}}|$,则四边形ABCD是(  )
A.平行四边形B.菱形C.等腰梯形D.矩形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若对任意的x1,x2∈[$\frac{1}{2}$,2],都有$\frac{a}{{x}_{1}}$+x1lnx1≥x23-x22-3成立,则实数a的取值范围是(  )
A.(0,+∞)B.[1,+∞)C.(-∞,0)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知α为第二象限角,且 sinα=$\frac{\sqrt{15}}{4}$,求$\frac{sin(α+\frac{π}{4})}{sin2α+cos2α+1}$的值.
(2)已知α∈(0,$\frac{π}{4}$),β∈(0,π),且tan(α-β)=$\frac{1}{2}$,tanβ=-$\frac{1}{7}$,求tan(2α-β)的值及角2α-β.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下面的程序运行后,输出的结果为4,1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.“五一”假期期间,某餐厅对选择A、B、C三种套餐的顾客进行优惠.对选择A、B套餐的顾客都优惠10元,对选择C套餐的顾客优惠20元.根据以往“五一”假期期间100名顾客对选择A、B、C三种套餐的情况得到下表:
选择套餐种类ABC
选择每种套餐的人数502525
将频率视为概率.
(I)若有甲、乙、丙三位顾客选择某种套餐,求三位顾客选择的套餐至少有两样不同的概率;
(II)若用随机变量X表示两位顾客所得优惠金额的综合,求X的分布列和期望.

查看答案和解析>>

同步练习册答案