【题目】设数列{an}的首项a1=1,且满足a2n+1=2a2n﹣1与a2n=a2n﹣1+1,则S20= .
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线C:x2=4y,点P是C的准线l上的动点,过点P作C的两条切线,切点分别为A,B,则△AOB面积的最小值为( )
A.![]()
B.2
C.2 ![]()
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的最小正周期为
,且直线
是其图象的一条对称轴.
(1)求函数
的解析式;
(2)在
中,角
、
、
所对的边分别为
、
、
,且
,
,若
角满足
,求
的取值范围;
(3)将函数
的图象向右平移
个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的
倍后所得到的图象对应的函数记作
,已知常数
,
,且函数
在
内恰有
个零点,求常数
与
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市教育部门为了解全市高三学生的身高发育情况,从本市全体高三学生中随机抽取了100人的身高数据进行统计分析.经数据处理后,得到了如下图1所示的频事分布直方图,并发现这100名学生中,身高不低于1.69米的学生只有16名,其身高茎叶图如下图2所示,用样本的身高频率估计该市高一学生的身高概率.
![]()
(1)求该市高三学生身高高于1.70米的概率,并求图1中
、
、
的值.
(2)若从该市高三学生中随机选取3名学生,记
为身高在
的学生人数,求
的分布列和数学期望;
(3)若变量
满足
且
,则称变量
满足近似于正态分布
的概率分布.如果该市高三学生的身高满足近似于正态分布
的概率分布,则认为该市高三学生的身高发育总体是正常的.试判断该市高三学生的身高发育总体是否正常,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
,(
为参数),
为曲线
上的动点,动点
满足
(
且
),
点的轨迹为曲线
.
(1)求曲线
的方程,并说明
是什么曲线;
(2)在以坐标原点为极点,以
轴的正半轴为极轴的极坐标系中,
点的极坐标为
,射线
与
的异于极点的交点为
,已知
面积的最大值为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于命题
:存在一个常数
,使得不等式
对任意正数
,
恒成立.
(1)试给出这个常数
的值;
(2)在(1)所得结论的条件下证明命题
;
(3)对于上述命题,某同学正确地猜想了命题
:“存在一个常数
,使得不等式
对任意正数
,
,
恒成立.”观察命题
与命题
的规律,请猜想与正数
,
,
,
相关的命题.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图231所示.
图231
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某生产厂家生产一种产品的固定成本为4万元,并且每生产1百台产品需增加投入0.8万元.已知销售收入
(万元)满足
(其中
是该产品的月产量,单位:百台),假定生产的产品都能卖掉,请完成下列问题:
(1)将利润表示为月产量
的函数
;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com