精英家教网 > 高中数学 > 题目详情
已知两点M(-1,0)、N(1,0),动点P(x,y)满足|
MN
|•|
NP
|-
MN
MP
=0,
(1)求点P的轨迹C的方程;
(2)假设P1、P2是轨迹C上的两个不同点,F(1,0),λ∈R,
FP1
FP2
,求证:
1
|FP1|
+
1
|FP2|
=1.
解 (1)|
MN
|=2
;则
MP
=(x+1,y),
NP
=(x-1,y)

|
MN
|•|
NP
|-
MN
MP
=0
,则2
(x-1)2+y2
-2(x+1)=0

化简整理得y2=4x
(2)由
FP1
=λ•
FP2
,得F、P1、P2三点共线,
设P1(x1,y1)、P2(x2,y2),直线P1P2的方程为:y=k(x-1)
代入y2=4x得:k2x2-2(k2+2)x+k2=0则x1•x2=1,x1+x2=
2k2+4
k2

1
|FP1|
+
1
|FP2|
=
1
x1+1
+
1
x2+1
=
x1+x2+2
x1x2+(x1+x2)+1
=1
当P1P2垂直x轴时,结论照样成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

抛物线的顶点在原点O,焦点为椭圆
x2
3
+
y2
2
=1的右焦点F.
(1)求抛物线的方程;
(2)设点P在抛物线上运动,求P到直线y=x+3的距离的最小值,并求此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过双曲线
x2
3
-
y2
6
=1
的右焦点F,倾斜角为30°的直线交此双曲线于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线C:y2=8x的焦点为F.椭圆Σ的中心在坐标原点,离心率e=
1
2
,并以F为一个焦点.
(1)求椭圆Σ的标准方程;
(2)设A1A2是椭圆Σ的长轴(A1在A2的左侧),P是抛物线C在第一象限的一点,过P作抛物线C的切线,若切线经过A1,求证:tan∠A1PA2=
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦点,Q是双曲线上动点,从左焦点引∠F1QF2的平分线的垂线,垂足为P,则P点的轨迹是(  )的一部分.
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两焦点为F1(-1,0)、F2(1,0),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|.
(1)求此椭圆的方程;
(2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的中心在原点,其左焦点F1与抛物线y2=-4x的焦点重合,过F1的直线l与椭圆交于A,B两点,与抛物线交于C,D两点.当直线l与x轴垂直时,
|CD|
|AB|
=2
2

(Ⅰ)求椭圆的方程;
(Ⅱ)求过点O,F1,并且与椭圆的左准线相切的圆的方程;
(Ⅲ)求
F2A
F2B
的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线y2=4x被直线y=2x+b所截得的弦长为3
5
,则b=______.

查看答案和解析>>

同步练习册答案