| A. | 4 | B. | $\frac{8\sqrt{3}}{3}$ | C. | 0 | D. | -4 |
分析 根据条件可以求出$CE=\frac{\sqrt{3}}{3},DF=1$,可分别以DC,DA所在直线为x,y轴,建立坐标系,可求出点A,E,B,F的坐标,从而得出向量$\overrightarrow{AE},\overrightarrow{BF}$的坐标,这样进行数量积的坐标运算便可求出$\overrightarrow{AE}•\overrightarrow{BF}$的值.
解答 解:如图所示,$\overrightarrow{BE}=2\overrightarrow{EC}$,∴$CE=\frac{1}{3}BC=\frac{\sqrt{3}}{3}$;![]()
$\overrightarrow{AB}•\overrightarrow{AF}=3$,∴AF•cos∠BAF=1,∴DF=1;
分别以DC,DA所在直线为x轴,y轴,建立如图所示平面直角坐标系,则:
$A(0,\sqrt{3}),E(3,\frac{\sqrt{3}}{3}),B(3,\sqrt{3}),F(1,0)$;
∴$\overrightarrow{AE}=(3,-\frac{2\sqrt{3}}{3}),\overrightarrow{BF}=(-2,-\sqrt{3})$;
∴$\overrightarrow{AE}•\overrightarrow{BF}=-6+2=-4$.
故选D.
点评 考查向量数乘的几何意义,向量数量积的计算公式,以及通过建立平面直角坐标系,利用向量坐标解决向量问题的方法,能求平面上点的坐标,根据点的坐标可求向量的坐标,以及向量数量积的坐标运算.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 25 | B. | 26 | C. | 560 | D. | 230 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com