精英家教网 > 高中数学 > 题目详情
函数f(x)是定义在R上的偶函数,且满足f(x+2)=f(x),当x∈[0,1]时,f(x)=2x.若在区间[-2,2]上方程ax+a-f(x)=0恰有三个不相等的实数根,则实数a的取值范围是(  )
A、[0,1)
B、[0,2]
C、[1,+∞)
D、[2,+∞)
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:由f(x+2)=f(x)得到函数的周期是2,利用函数的周期性和奇偶性作出函数f(x)的图象,由ax+a-f(x)=0等价为f(x)=a(x+1),利用数形结合即可得到结论.
解答: 解:若在区间[-2,2]上方程ax+a-f(x)=0恰有三个不相等的实数根,等价为f(x)=a(x+1)有三个不相等的实数根,
即函数f(x)和g(x)=a(x+1),有三个不相同的交点,
∵f(x+2)=f(x),∴函数的周期是2,
当-1≤x≤0时,0≤-x≤1,此时f(-x)=-2x,
∵f(x)是定义在R上的偶函数,
∴f(-x)=-2x=f(x),
即f(x)=-2x,-1≤x≤0,
作出函数f(x)和g(x)的图象,则A(-1,0),B(1,2),
当g(x)经过B(1,2)时,两个图象有2个交点,此时g(1)=2a=2,解得a=1,
要使在区间[-2,2]上方程ax+a-f(x)=0恰有三个不相等的实数根,
则0≤a<1,
故选:A.
点评:本题主要考查方程根的公式的应用,利用方程和函数之间的关系,转化为两个函数的交点问题,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线y=kx-1与椭圆
x2
4
+
y2
a
=1相切,则a的取值范围
 
,k的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=6,ED=2,则BC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
|lg|x-1||,x≠1
0,x=1

(1)试根据c不同取值,讨论f2(x)+f(x)+c=0的实数解的个数;
(2)试根据b不同取值,讨论f2(x)+bf(x)+1=0的实数解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log2x,(x>0)
3x,(x≤0)
,则方程f(x)=1解的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公比为正数的等比数列,若a3=4,a5=16,则数列{an}的前5项和为=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)函数y=x2+x+2的递增区间是
 

(2)y=-x2-4mx+1在[2,+∞)上是减函数,则m取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin2(x+
π
4
)-
3
cos2x,x∈[
π
4
π
2
].设x=α时f(x)取到最大值.
(1)求f(x)的最大值及α的值;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,A=α-
π
12
,且sinBsinC=sin2A,试判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人进行投篮比赛,两人各投3球,谁投进的球数多谁获胜,已知每次投篮甲投进的概率为
4
5
,乙投进的概率为
1
2
,求:
(1)甲投进2球且乙投进1球的概率;
(2)在甲第一次投篮未投进的条件下,甲最终获胜的概率.

查看答案和解析>>

同步练习册答案