| A. | f(-4)<f(3)<f(-2) | B. | f(-2)<f(3)<f(-4) | C. | f(3)<f(-2)<f(-4) | D. | f(-4)<f(-2)<f(3) |
分析 根据题意,分析可得函数f(x)在区间(-∞,0)上为增函数,则有f(-4)<f(-3)<f(-2),结合函数的奇偶性可得f(-4)<f(3)<f(-2),即可得答案.
解答 解:根据题意,f(x)满足:对任意的x1,x2∈(-∞,0),有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,
则函数f(x)在区间(-∞,0)上为增函数,则有f(-4)<f(-3)<f(-2),
由于函数f(x)为偶函数,则有f(3)=f(-3),
则有f(-4)<f(3)<f(-2),
故选:A.
点评 本题考查函数奇偶性与单调性的应用,注意先分析函数f(x)的单调性.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{a>0}\\{{b}^{2}-4ac≤0}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{a>0}\\{{b}^{2}-4ac<0}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{a<0}\\{{b}^{2}-4ac≥0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{a<0}\\{{b}^{2}-4ac<0}\end{array}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2n}{2n+1}$ | B. | $\frac{2n}{n+1}$ | C. | $\frac{n+2}{n+1}$ | D. | $\frac{n}{2n+1}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com