精英家教网 > 高中数学 > 题目详情
20.二次不等式ax2+bx+c<0的解集是空集的条件是(  )
A.$\left\{\begin{array}{l}{a>0}\\{{b}^{2}-4ac≤0}\end{array}\right.$B.$\left\{\begin{array}{l}{a>0}\\{{b}^{2}-4ac<0}\end{array}\right.$C.$\left\{\begin{array}{l}{a<0}\\{{b}^{2}-4ac≥0}\end{array}\right.$D.$\left\{\begin{array}{l}{a<0}\\{{b}^{2}-4ac<0}\end{array}\right.$

分析 根据二次函数的性质与二次不等式的关系判断即可.

解答 解:若二次不等式ax2+bx+c<0的解集是空集,
即二次不等式ax2+bx+c≥0在R恒成立,
故$\left\{\begin{array}{l}{a>0}\\{△{=b}^{2}-4ac≤0}\end{array}\right.$,
故选:A.

点评 本题考查了二次函数的性质,考查函数和不等式的关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.二项式(x+1)n(n∈N*)的展开式中x2项的系数为15,则n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|tx-2|-|tx+1|,a∈R.
(1)当t=1时,解不等式f(x)≤1;
(2)若对任意实数t,f(x)的最大值恒为m,求证:对任意正数a,b,c,当a+b+c=m时,$\sqrt{a}+\sqrt{b}+\sqrt{c}$≤m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=lg({x+\sqrt{{x^2}+1}})+2x+sinx,f({x_1})+f({x_2})>0$,则下列不等式中正确的是(  )
A.x1>x2B.x1<x2C.x1+x2<0D.x1+x2>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:n=2及n=3时,如图,记Sn为每个序列中最后一列数之和,则S7为(  )
A.1089B.680C.840D.2520

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设i是虚数单位,则复数$\frac{3-i}{2+i}$的虚部为(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若(x-i)i=y+2i,x,y∈R,其中i为虚数单位,则复数x+yi=(  )
A.2+iB.-2+iC.1-2iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0),有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,则(  )
A.f(-4)<f(3)<f(-2)B.f(-2)<f(3)<f(-4)C.f(3)<f(-2)<f(-4)D.f(-4)<f(-2)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知I是虚数单位,若(2+i)(m-2i)是实数,则实数m=4.

查看答案和解析>>

同步练习册答案