分析 (1)求出f(x)的分段函数的形式,求出f(x)的最大值,求出不等式的解集即可;
(2)根据绝对值不等式的性质求出m的值,结合不等式的性质证明即可.
解答 解:(1)t=1时,f(x)=|x-2|-|x+1|,
$f(x)=\left\{\begin{array}{l}3,x<-1\\-2x+1,1≤x<2\\-3\end{array}\right.$,
所以f(x)≤1,
故不等式的解集为[0,+∞)
(2)由绝对值不等式得||tx-2|-|tx+1|≤|(tx-2)-(tx+1)||=3,
所以f(x)最大值为3,故m=3,
故$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$≤$\sqrt{1•a}$+$\sqrt{1•b}$+$\sqrt{1•c}$
≤$\frac{1+a}{2}$+$\frac{1+b}{2}$+$\frac{1+c}{2}$=$\frac{3+a+b+c}{2}$=3,
当且仅当a=b=c=1时等号成立,
故原结论成立.
点评 本题考查了解绝对值不等式问题,考查分类讨论思想以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2008-1 | B. | -2008-1 | C. | (-1)n2008 | D. | (-1)n2008-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{a>0}\\{{b}^{2}-4ac≤0}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{a>0}\\{{b}^{2}-4ac<0}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{a<0}\\{{b}^{2}-4ac≥0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{a<0}\\{{b}^{2}-4ac<0}\end{array}\right.$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com