精英家教网 > 高中数学 > 题目详情
18.已知角α的终边在直线y=3x上,则sin2α+sin2α=$\frac{11}{10}$.

分析 利用任意角的三角函数的定义求得tanα的值,再利用同角三角函数的基本关系,求得要求式子的值.

解答 解:∵角α的终边在直线y=3x上,∴tanα=3,
则sin2α+sin2α=$\frac{{sin}^{2}α+2sinα•cosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α+2}{{tan}^{2}α+1}$=$\frac{9+2}{9+1}$=$\frac{11}{10}$,
故答案为:$\frac{11}{10}$.

点评 本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=lg({x+\sqrt{{x^2}+1}})+2x+sinx,f({x_1})+f({x_2})>0$,则下列不等式中正确的是(  )
A.x1>x2B.x1<x2C.x1+x2<0D.x1+x2>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0),有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,则(  )
A.f(-4)<f(3)<f(-2)B.f(-2)<f(3)<f(-4)C.f(3)<f(-2)<f(-4)D.f(-4)<f(-2)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足a1=$\frac{3}{4}$,an+1-an=2n+1,则数列{$\frac{1}{{a}_{n}}$}的前n项和Sn=$\frac{4n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知递增等差数列{an}的前n项和为Sn,a3a5=45,S7=49,则数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和为(  )
A.$\frac{2n}{2n-1}$B.$\frac{n}{2n-1}$C.$\frac{2n}{2n+1}$D.$\frac{n}{2n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\left\{\begin{array}{l}\frac{1}{a}x,0≤x≤a\\ \frac{1}{1-a}({1-x}),a<x≤1\end{array}$,a为常数,且a∈(0,1).
(1)若x0满足f(x0)=x0,则称x0为f(x)的一阶周期点,证明函数f(x)有且只有两个一阶周期点;
(2)若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶周期点,当a=$\frac{1}{2}$时,求函数f(x)的二阶周期点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知I是虚数单位,若(2+i)(m-2i)是实数,则实数m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在锐角△ABC中,sinA=sinBsinC,则tanB+2tanC的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx-$\frac{a}{2}$x2-x+a,a∈R
(1)当a=0时,求函数f(x)的极值;
(2)若函数f(x)在其定义域内有两个不同的极值点(极值点是指函数取极值时对应的自变量的值),记为x1,x2,且x1<x2
(ⅰ)求a的取值范围;
(ⅱ)若不等式e1+λ<x1•x${\;}_{2}^{λ}$恒成立,求正实数λ的取值范围.

查看答案和解析>>

同步练习册答案