3£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}\frac{1}{a}x£¬0¡Üx¡Üa\\ \frac{1}{1-a}£¨{1-x}£©£¬a£¼x¡Ü1\end{array}$£¬aΪ³£Êý£¬ÇÒa¡Ê£¨0£¬1£©£®
£¨1£©Èôx0Âú×ãf£¨x0£©=x0£¬Ôò³Æx0Ϊf£¨x£©µÄÒ»½×ÖÜÆÚµã£¬Ö¤Ã÷º¯Êýf£¨x£©ÓÐÇÒÖ»ÓÐÁ½¸öÒ»½×ÖÜÆÚµã£»
£¨2£©Èôx0Âú×ãf£¨f£¨x0£©£©=x0£¬ÇÒf£¨x0£©¡Ùx0£¬Ôò³Æx0Ϊf£¨x£©µÄ¶þ½×ÖÜÆÚµã£¬µ±a=$\frac{1}{2}$ʱ£¬Çóº¯Êýf£¨x£©µÄ¶þ½×ÖÜÆÚµã£®

·ÖÎö £¨1£©ÀûÓö¨Òåͨ¹ýµ±0¡Üx¡Üaʱ£¬µ±a£¼x¡Ü1ʱ£¬ÑéÖ¤º¯Êýf£¨x£©ÓÐÇÒÖ»ÓÐÁ½¸öÒ»½×ÖÜÆÚµã£®
£¨2£©µ±$a=\frac{1}{2}$ʱ£¬$f£¨x£©=\left\{\begin{array}{l}2x£¬0¡Üx¡Ü\frac{1}{2}\\ 2£¨{1-x}£©£¬\frac{1}{2}£¼x¡Ü1\end{array}\right.$£¬ÍƳö$f£¨{f£¨x£©}£©=\left\{\begin{array}{l}4x£¬0¡Üx¡Ü\frac{1}{4}\\ 2-4x£¬\frac{1}{4}£¼x¡Ü\frac{1}{2}\\ 4x-2£¬\frac{1}{2}£¼x£¼\frac{3}{4}\\ 4-4x£¬\frac{3}{4}¡Üx¡Ü1\end{array}\right.$£¬ÀûÓú¯ÊýµÄ¶¨ÒåÓò£¬Í¨¹ý·Ö¶ÎÇó½â¼´¿É£®

½â´ð £¨1£©Ö¤Ã÷£ºÓÉÌâ¿ÉµÃ£¬µ±0¡Üx¡Üaʱ£¬$\frac{1}{a}x=x$£¬ÒòΪa¡Ê£¨0£¬1£©£¬ËùÒÔx=0£» ¡­£¨2·Ö£©
µ±a£¼x¡Ü1ʱ£¬$\frac{1}{1-a}£¨1-x£©=x$£¬ÒòΪa¡Ê£¨0£¬1£©£¬ËùÒÔx=$\frac{1}{2-a}$£¬
ËùÒÔº¯Êýf£¨x£©ÓÐÇÒÖ»ÓÐÁ½¸öÒ»½×ÖÜÆÚµã£®¡­£¨4·Ö£©
£¨2£©½â£ºµ±$a=\frac{1}{2}$ʱ£¬$f£¨x£©=\left\{\begin{array}{l}2x£¬0¡Üx¡Ü\frac{1}{2}\\ 2£¨{1-x}£©£¬\frac{1}{2}£¼x¡Ü1\end{array}\right.$
ËùÒÔ$f£¨{f£¨x£©}£©=\left\{\begin{array}{l}4x£¬0¡Üx¡Ü\frac{1}{4}\\ 2-4x£¬\frac{1}{4}£¼x¡Ü\frac{1}{2}\\ 4x-2£¬\frac{1}{2}£¼x£¼\frac{3}{4}\\ 4-4x£¬\frac{3}{4}¡Üx¡Ü1\end{array}\right.$¡­£¨7·Ö£©
µ±$0¡Üx¡Ü\frac{1}{4}$ʱ£¬ÓÉ4x=x£¬½âµÃx=0£¬
ÒòΪf£¨0£©=0£¬¹Êx=0²»ÊÇf£¨x£©µÄ¶þ½×ÖÜÆÚµã£» ¡­£¨8·Ö£©
µ±$\frac{1}{4}£¼x¡Ü\frac{1}{2}$ʱ£¬ÓÉ2-4x=x£¬½âµÃ$x=\frac{2}{5}$£¬
ÒòΪ$f£¨{\frac{2}{5}}£©=2¡Á\frac{2}{5}=\frac{4}{5}¡Ù\frac{2}{5}$£¬¹Ê$x=\frac{2}{5}$ÊÇf£¨x£©µÄ¶þ½×ÖÜÆÚµã£»    ¡­£¨9·Ö£©
µ±$\frac{1}{2}£¼x£¼\frac{3}{4}$ʱ£¬ÓÉ4x-2=x£¬½âµÃ$x=\frac{2}{3}$£¬
ÒòΪ$f£¨{\frac{2}{3}}£©=2¡Á£¨{1-\frac{2}{3}}£©=\frac{2}{3}$£¬¹Ê$x=\frac{2}{3}$²»ÊÇf£¨x£©µÄ¶þ½×ÖÜÆÚµã£»  ¡­£¨10·Ö£©
µ±$\frac{3}{4}¡Üx¡Ü1$ʱ£¬ÓÉ4-4x=x£¬½âµÃ$x=\frac{4}{5}$£¬
ÒòΪ$f£¨{\frac{4}{5}}£©=2¡Á£¨{1-\frac{4}{5}}£©=\frac{2}{5}¡Ù\frac{4}{5}$£¬¹Ê$x=\frac{4}{5}$ÊÇf£¨x£©µÄ¶þ½×ÖÜÆÚµã£» ¡­£¨11·Ö£©
×ÛÉÏ£¬µ±$a=\frac{1}{2}$ʱ£¬º¯Êýf£¨x£©µÄ¶þ½×ÖÜÆÚµãΪx1=$\frac{2}{5}$£¬x2=$\frac{4}{5}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÓ¦Óã¬Ð¶¨ÒåµÄÓ¦Ó㬿¼²éº¯ÊýÓë·½³ÌµÄ˼ÏëµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ò»¸ø¶¨º¯Êýy=f£¨x£©µÄͼÏóÔÚÏÂÁÐͼÖУ¬²¢ÇÒ¶ÔÈÎÒâa1¡Ê£¨0£¬1£©£¬ÓɹØÏµÊ½an+1=f£¨an£©µÃµ½µÄÊýÁÐ{an}Âú×ãan+1£¾an£¬n¡ÊN*£¬Ôò¸Ãº¯ÊýµÄͼÏóÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒ£¨a-c£©£¨sinA+sinC£©=£¨a-b£©sinB£®
£¨1£©Çó½ÇCµÄ´óС£»
£¨2£©Èôc=$\sqrt{3}$¡Üa£¬Çó2a-bµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èô¸´Êý$z=\frac{a+3i}{1+2i}£¨{a¡ÊR}£©$Ϊ´¿ÐéÊý£¬ÔòʵÊýa=£¨¡¡¡¡£©
A£®-6B£®-2C£®2D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª½Ç¦ÁµÄÖÕ±ßÔÚÖ±Ïßy=3xÉÏ£¬Ôòsin2¦Á+sin2¦Á=$\frac{11}{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬ÆäǰnÏîºÍΪSn£¬Ê×Ïîa1=1£¬ÇÒSn=$\frac{1}{2}$£¨an+$\frac{1}{{a}_{n}}$£©£¬n¡ÊN*£®
£¨1£©Çóa2£¬a3£¬a4£¬a5µÄÖµ£»
£¨2£©ÊÔ²ÂÏëÊýÁÐ{an}µÄͨÏʽ£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖª$cos£¨{\frac{5¦Ð}{12}+¦È}£©=\frac{3}{5}$£¬ÇÒ-¦Ð£¼¦È£¼-$\frac{¦Ð}{2}$£¬Ôò$cos£¨{\frac{¦Ð}{12}-¦È}£©$=$-\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚ3ÃûÄнÌʦºÍ3ÃûÅ®½ÌʦÖÐѡȡ3È˲μÓÒåÎñÏ×Ѫ£¬ÒªÇóÄС¢Å®½Ìʦ¶¼ÓУ¬ÔòÓÐ18ÖÖ²»Í¬µÄѡȡ·½·¨£¨ÓÃÊý×Ö×÷´ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=3£¬n£¨an+1-an£©=an+1£¬n¡ÊN*Èô¶ÔÓÚÈÎÒâµÄa¡Ê[-1£¬1]£¬n¡ÊN*£¬²»µÈʽ$\frac{{{a_{n+1}}}}{n+1}£¼{t^2}$-2at+1ºã³ÉÁ¢£¬ÔòʵÊýtµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬-3]¡È[3£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸