精英家教网 > 高中数学 > 题目详情
13.已知数列{an}中,a1=3,n(an+1-an)=an+1,n∈N*若对于任意的a∈[-1,1],n∈N*,不等式$\frac{{{a_{n+1}}}}{n+1}<{t^2}$-2at+1恒成立,则实数t的取值范围是(-∞,-3]∪[3,+∞).

分析 n(an+1-an)=an+1,化为:$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.利用$\frac{{a}_{n}}{n}$=$(\frac{{a}_{n}}{n}-\frac{{a}_{n-1}}{n-1})$+$(\frac{{a}_{n-1}}{n-1}-\frac{{a}_{n-2}}{n-2})$+…+$(\frac{{a}_{2}}{2}-\frac{{a}_{1}}{1})$+a1
可得$\frac{{a}_{n}}{n}$,不等式$\frac{{{a_{n+1}}}}{n+1}<{t^2}$-2at+1化为:4-$\frac{1}{n+1}$<t2-2at+1,根据对于任意的a∈[-1,1],n∈N*,不等式$\frac{{{a_{n+1}}}}{n+1}<{t^2}$-2at+1恒成立,可得t2-2at+1≥4,化为:t2-2at-3≥0,对t分类讨论即可得出.

解答 解:∵n(an+1-an)=an+1,
∴$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴$\frac{{a}_{n}}{n}$=$(\frac{{a}_{n}}{n}-\frac{{a}_{n-1}}{n-1})$+$(\frac{{a}_{n-1}}{n-1}-\frac{{a}_{n-2}}{n-2})$+…+$(\frac{{a}_{2}}{2}-\frac{{a}_{1}}{1})$+a1
=$(\frac{1}{n-1}-\frac{1}{n})$+$(\frac{1}{n-2}-\frac{1}{n})$+…+$(1-\frac{1}{2})$+3
=1-$\frac{1}{n}$+3(n=1时也成立).
∴不等式$\frac{{{a_{n+1}}}}{n+1}<{t^2}$-2at+1化为:4-$\frac{1}{n+1}$<t2-2at+1,
∵对于任意的a∈[-1,1],n∈N*,不等式$\frac{{{a_{n+1}}}}{n+1}<{t^2}$-2at+1恒成立,
∴t2-2at+1≥4,
化为:t2-2at-3≥0,
t≠0,t>0时,a≤$\frac{{t}^{2}-3}{2t}$,可得1≤$\frac{{t}^{2}-3}{2t}$,化为t2-2t-3≥0,t>0,解得t≥3.
t<0时,a≥$\frac{{t}^{2}-3}{2t}$,可得-1≥$\frac{{t}^{2}-3}{2t}$,化为t2+2t-3≥0,t<0,解得t≤-3.
则实数t的取值范围是(-∞,-3]∪[3,+∞).
故答案为:(-∞,-3]∪[3,+∞).

点评 本题考查了数列递推关系、裂项求和方法、不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\left\{\begin{array}{l}\frac{1}{a}x,0≤x≤a\\ \frac{1}{1-a}({1-x}),a<x≤1\end{array}$,a为常数,且a∈(0,1).
(1)若x0满足f(x0)=x0,则称x0为f(x)的一阶周期点,证明函数f(x)有且只有两个一阶周期点;
(2)若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为f(x)的二阶周期点,当a=$\frac{1}{2}$时,求函数f(x)的二阶周期点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若数据x1,x2,…,x8的方差为3,则数据2x1,2x2,..,2x8的方差为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.用反证法证明“a,b∈N*,若ab是偶数,则a,b中至少有一个是偶数”时,应假设a,b都不是偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx-$\frac{a}{2}$x2-x+a,a∈R
(1)当a=0时,求函数f(x)的极值;
(2)若函数f(x)在其定义域内有两个不同的极值点(极值点是指函数取极值时对应的自变量的值),记为x1,x2,且x1<x2
(ⅰ)求a的取值范围;
(ⅱ)若不等式e1+λ<x1•x${\;}_{2}^{λ}$恒成立,求正实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线l过定点(1,0),且倾斜角为$\frac{π}{3}$,则直线l的一般式方程为$\sqrt{3}$x-y-$\sqrt{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足${a_n}=\left\{\begin{array}{l}2{a_{n-1}}-2,n=2k+1\\{a_{n-1}}+1,n=2k\end{array}\right.$(k∈N*),若a1=1,则S20=2056.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x∈(-$\frac{π}{2}$,0),cosx=$\frac{3}{5}$,则tan2x=$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx.
(1)设h(x)为偶函数,当x<0时,h(x)=f(-x)+2x,求曲线y=h(x)在点(1,-2)处的切线方程;
(2)设g(x)=f(x)-mx,求函数g(x)的极值;
(3)若存在x0>1,当x∈(1,x0)时,恒有f(x)>$\frac{1}{2}{x}^{2}+(k-1)x-k+\frac{1}{2}$成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案