分析 由条件利用同角三角函数的基本关系求得tanx的值,再利用二倍角公式求得所给的式子的值.
解答 解:∵x∈(-$\frac{π}{2}$,0),cosx=$\frac{3}{5}$,∴sinx=$\sqrt{{1-cos}^{2}x}$=-$\frac{4}{5}$,∴tanx=$\frac{sinx}{cosx}$=-$\frac{4}{3}$,
则tan2x=$\frac{2tanx}{{1-tan}^{2}x}$=$\frac{-\frac{8}{3}}{1-\frac{16}{9}}$=$\frac{24}{7}$,
故答案为:$\frac{24}{7}$.
点评 本题主要考查应用同角三角函数的基本关系、二倍角的正切公式的应用,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${\;}_{y}^{∧}$=x-1 | B. | ${\;}_{y}^{∧}$=x+2 | C. | ${\;}_{y}^{∧}$=2x+1 | D. | ${\;}_{y}^{∧}$=x+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18 | B. | 9 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-0.4,-0.3) | B. | (-0.2,-0.1) | C. | (-0.3,-0.2) | D. | (0.4,0.5) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{25}{4}$,8] | B. | [$\frac{31}{5}$,$\frac{212}{9}$] | C. | [8,$\frac{212}{9}$] | D. | [$\frac{31}{5}$,8] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com